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ABSTRACT
The standard system-based evaluation paradigm has focused
on assessing the performance of retrieval systems in serving
the best results for a single query. Real users, however, often
begin an interaction with a search engine with a sufficiently
under-specified query that they will need to reformulate be-
fore they find what they are looking for. In this work we con-
sider the problem of evaluating retrieval systems over test
collections of multi-query sessions. We propose two families
of measures: a model-free family that makes no assumption
about the user’s behavior over a session, and a model-based
family with a simple model of user interactions over the ses-
sion. In both cases we generalize traditional evaluation met-
rics such as average precision to multi-query session evalua-
tion. We demonstrate the behavior of the proposed metrics
by using the new TREC 2010 Session track collection and
simulations over the TREC-9 Query track collection.

Categories and Subject Descriptors: H.3.4 [Informa-
tion Storage and Retrieval] Performance Evaluation

General Terms: Experimentation, Measurement

Keywords: information retrieval, test collections, evalua-
tion, sessions

1. INTRODUCTION
Evaluation measures play a critical role in the develop-

ment of retrieval systems, both as measures in compara-
tive evaluation experiments and as objective functions for
optimizing system effectiveness. The standard evaluation
paradigm has focused on assessing the performance of re-
trieval systems in serving the best results for a single query,
for varying definitions of “best”: for ad hoc tasks, the most
relevant results; for diversity tasks, the results that do the
best job of covering a space of information needs; for known-
item tasks, the single document the user is looking for. There
are many test collections for repeatable experiments on these
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tasks, and dozens of evaluation measures assessing different
aspects of task effectiveness.

Real users, however, often begin an interaction with a
search engine with a query that they will need to reformulate
one or more times before they find what they are looking for.
Early studies on web search query logs showed that half of
all Web users reformulated their initial query: 52% of the
users in 1997 Excite data set, 45% of the users in the 2001
Excite dataset [15].

The standard evaluation paradigm of single-query test col-
lections seems unable to assess the effectiveness of retrieval
systems over sequences of query reformulations. Interactive
evaluation has been employed as an alternative. In inter-
active evaluation the user is part of the evaluation cycle
and freely interacts with the results of a retrieval system.
Measures such as instance recall [11] and session discounted
cumulative gain [6] have been proposed to capture the ef-
fectiveness of systems in these settings. Even though an
interactive evaluation paradigm can better capture the ac-
tual user experience, it is both noisy due to the high degrees
of freedom of user interactions and expensive due to its low
reusability and need for many test subjects. Furthermore,
conducting interactive comparative evaluation experiments
is by no means an easy task.

The TREC 2010 Session track [7] proposed an experiment
for the evaluation of retrieval systems over multi-query ses-
sions. We defined a session as a sequence of reformulations
in the service of satisfying a general information need, and
constructed a test collection of two query reformulations (an
initial and a follow-up query) for each of 150 information
needs. This collection makes compromises for simplicity and
tractability, but it provides a starting point for investigation
of questions about test collection-based session evaluation.

In addition to a test collection, new evaluation measures
are necessary as well. Traditional evaluation measures only
capture per-query effectiveness; they are not necessarily ap-
propriate for evaluating the effectiveness of a retrieval sys-
tem over a multi-query session. While one could evaluate
results for each query in the session in isolation, it may not
be the case that the system is serving results for each query
independently. Doing so would lose potentially valuable in-
formation about the ability of the system to provide results
for the session as a unit, and thus reduce our ability to op-
timize system performance across sessions.

Due to the lack of appropriate measures Järvelin et al. [6]
extended the normalized discounted cumulative gain (nDCG)
measure to a measure that considers multi-query sessions.
The measure—called normalized session discounted cumula-



tive gain (nsDCG)—discounts documents that appear lower
in the ranked list for a given query as well as documents
that appear after more query reformulations. In a sense the
new model incorporates a cost for reformulating a query as
well as scanning down a ranked list.

The nsDCG measure is computed as follows: for each
query in a series of reformulations, DCG is computed in
isolation of all other queries in the series. Each DCG is
then discounted by a function of the position q of the query
in the series. The measure can evaluate the effectiveness
of retrieval systems over multiple queries in an interactive
retrieval scenario, in which a user moves down a ranked
list of documents and at some rank reformulates the query.
Since the reformulation points are known (from observing
the users), DCG is computed at those points for each query
and at the stopping point for the last reformulation. In
a test collection of static sessions, however, reformulation
points are unknown. Using nsDCG requires the selection of
a fixed reformulation cut-off, which clearly does not reflect
the fact that different retrieval results may trigger different
user behavior. Further, the measure does not model early
abandonment of a query session; our TREC session collec-
tion comes with a fixed number of reformulations, but a
user may choose to abandon the session before reaching the
last reformulation (either due to satisfaction or due to frus-
tration). A multi-query session measure should be able to
model such behavior.

Yang and Lad [16] overcame the need to define a fixed
reformulation point by defining a session measure as an ex-
pectation over a set of possible browsing paths. Based on
this they proposed a measure of expected utility for a multi-
query information distillation task. Given a series of m re-
formulations the proposed measure accounts for all possible
browsing paths that end in the kth reformulation. Each
path has a certain probability to be realized by a user. To
define the probability of a user following a certain path Yang
and Lad [16] follow the rank biased precision (RBP) frame-
work [10], replacing RBP’s stopping condition with a refor-
mulation condition. The utility of each path is a function of
the relevance and novelty of the returned documents being
considered. The system effectiveness is then defined as the
expected utility calculated over the aforementioned proba-
bilistic space of browsing paths. Though the expected utility
solves the problem of variable reformulation points, it still
does not allow early abandonment of the query session.

In this work we consider the problem of evaluating re-
trieval systems over test collections of static multi-query ses-
sions. We propose two families of measures: one that makes
no assumptions about the user’s behavior over a session,
and another with a simple model of user interactions over
the session. In the latter case we provide a general frame-
work to accommodate different models of user interactions
in the course of a session, avoiding predefined reformulation
cut-offs and allowing early abandonment. In both cases we
generalize traditional evaluation measures such as average
precision to multi-query session evaluation.

2. MULTI-QUERY SESSION COLLECTION
AND USER MODEL

We define a session test collection as one with a set of top-
ics, each of which consist of a description of an information
need and a static sequence of m title queries (an initial query

query q1,1 query q1,2 query q1,3

ranking 1 ranking 2 ranking 3
d1 N d′1 R d′′1 R
d2 N d′2 R d′′2 R
d3 N d′3 R d′′3 R
d4 N d′4 R d′′4 R
d5 N d′5 R d′′5 R
d6 N d′6 N d′′6 R
d7 N d′7 N d′′7 R
d8 N d′8 N d′′8 R
d9 N d′9 N d′′9 R
d10 N d′10 N d′′10 R
... ... ... ... ... ...

Table 1: Example rankings (document IDs and rel-
evance judgments) for three queries q1,1, q1,2, q1,3 in
a session for topic number 1. Here we assume all
documents are unique.

and m − 1 reformulations), and judgments of the relevance
of documents to the topics. For simplicity, we assume that
all reformulations are directed towards a single information
need, so there is a global set of relevant documents of size
R.1 This definition is similar to those used by Järvelin et
al. [6] and Yang & Lad [16], and it is essentially the defi-
nition used for the TREC 2010 Session track in the case of
specification and generalization reformulations [7].

Following Cooper in his proposal for the expected search
length measure [5], we assume a user stepping down the
ranked list of results until some decision point. To this we
add an additional possible action: the decision point can be
either a stopping point for the search, or a point at which
the user reformulates their query. Thus, a user experiences
results by either moving down a ranking (i.e. moving from
rank k to rank k + 1 in ranking ~ri) or to the top of the
next ranking by reformulating ( i.e. moving from rank k in
ranking ~ri to rank 1 in ranking ~ri+1.).

Consider the example in Table 1. A user with a certain
information need formulates a query and submits it to a re-
trieval system. The retrieval system returns a ranked list
of documents, ~r1 = (d1, d2, ..., d10, ...). Suppose the user’s
first decision point occurs at document d5. After seeing
that document, the user decides to reformulate the original
query and resubmit it to the retrieval system. The retrieval
system responds with a second ranked list of documents,
~r2 = (d′1, d

′
1, ..., d

′
10, ...). The user reads the documents once

again from top to bottom and abandons the session. If we
only consider the documents the user has examined over the
session of reformulations then a final composite ranked list,
~cl, can be composed: ~cl = (d1, d2, . . . , d5, d

′
1, d

′
2, d

′
3, . . . ).

Given the relevance of the documents in the composite

ranked list ~cl, any traditional evaluation measure can be
calculated in the usual manner. We may require assump-
tions about the relevance of duplicates, e.g. if d1 and d′2 are
the same relevant document, how they should count towards
the evaluation measure; we will consider these in Section 5.

1In practice users’ information needs may change during a
search session and over time [1]; assuming it is fixed is a
modeling assumption we make for tractability. Some of our
measures require this assumption, but it can be relaxed for
other measures.



2.1 Evaluation over paths
The composite list ~cl is the outcome of a series of decisions.

We define a path ω through the results as a series of decisions
to either move down a ranking, reformulate and start at
the top of the next ranking, or abandon the search. We
assume that at least one document—the first one—is viewed
in each ranking. A path of length k is a path that results
in k documents viewed. We denote the set of unique paths
of length k as Ωk, and the set of all unique paths as Ω.
A path can be represented as a series of actions, e.g. ω =
{down, down, ..., reformulate, down, ..., abandon}; as a series

of document IDs viewed, e.g. ω = ~cl above; or as a series
of ranks at which reformulations or abandonment occurred,
e.g. ω = {5, ...}. The three are equivalent in the sense of
providing complete information about the series of decisions;
the last, being most compact, is the one we will use.

Different paths result in different documents being seen,
and in many cases different numbers of relevant documents.
Precision after k documents viewed may result in very differ-
ent values depending on the path chosen: a user that views
10 documents in ~r1 (the relevance of which is shown in Ta-
ble 1), experiences 0 precision, while one that reformulates
immediately after the first document in ~r1 and steps down ~r2

until rank 9 experiences precision of 5/10. In an interactive
evaluation scenario where real users interact with the ranked
list of documents returned by a retrieval system, the point
at which a user decides either to reformulate their previous
query or to abandon the search can be explicitly recorded
by observation, or implicitly inferred by looking at (for in-
stance) the last clicked document. In batch laboratory ex-
periments with static sessions, however, the reformulation
and stopping points are undefined—there is no user from
which to record them. This presents a challenge for defining
evaluation measures.

In this work we propose evaluating static sessions by sum-
marizing evaluation results over all paths through the re-
sults. We will consider two directions: one a “model-free”
approach inspired by interpolated precision and recall, the
other a model-based approach that explicitly defines prob-
abilities for certain actions, then averages over paths. In
both approaches we would like to make as few assumptions
as possible about the reasons a user reformulates.

2.2 Counting paths
The number of possible paths grows fairly fast. Consider

a path of length k ending in reformulation number j. For
example, the paths of length 4 ending at reformulation 2 are
{d1, d2, d3, d

′
1}, {d1, d2, d

′
1, d

′
2}, and {d1, d

′
1, d

′
2, d

′
3}. For any

given k and j, we can count the number of possible paths
as follows: imagine a ranking as a list of k documents, then
place j−1 reformulation points between any two documents
in that list. The number of different places we can insert
them is

`
k−1
j−1

´
, and this is therefore the number of paths of

length k that end at reformulation j.
The total number of paths of length k is:

|Ωk| =
mX

j=1

 
k − 1

j − 1

!

This is the definition of elements in the Bernoulli triangle.
Its rate of growth is unknown, but it is O(k2) for m = 2 and
approaches 2k−1 as m increases to k. The total number of
paths of any length is |Ω| =

Pn
k=1 |Ωk| = O(2n).

j = 1 j = 2 j = 3 · · ·
k = 1 {0} – –
k = 2 {0} {1} –
k = 3 {0} {1, 2} {2}
k = 4 {0} {1, 2, 3} {2, 3, 3}
k = 5 {0} {1, 2, 3, 4} {2, 3, 3, 4, 4, 4}
· · ·

Table 2: Relevant document counts for different
paths of length k ending at ranking j from the ex-
ample in Table 1.

On the other hand, if we only consider paths that end at
reformulation j but continue down ranked list ~rj indefinitely,
the number is more manageable. We can enumerate these
by simply iterating over stopping points k1 = 1...|~r1|, and
for each of those over stopping points k2 = 1...|~r2|, and so
on. Within the (j− 1)st loop, ω = {k1, ..., kk−1} is the path
to that point. This takes |~r1| × |~r2| × · · · × |~rm−1| = O(nm)
time, which, while not exactly fast, is at least manageable.

3. MODEL-FREE SESSION EVALUATION
Our first goal is to develop a method for evaluating the

effectiveness of a system over a set of reformulations mak-
ing no assumptions about when or why users reformulate.
The approach is inspired by interpolated precision: there is
no formal user model behind interpolated precision, but it
reduces the full evaluation data (precision at every rank) to
a manageable set while still providing useful intuition about
system performance, particularly when plotted against re-
call values. Likewise, there is no formal user model behind
these measures, but they give some intuition while greatly
reducing the amount of evaluation data, which as we saw
above grows exponentially.

Consider all paths of length k that end at reformulation
j. On each of those paths the user will see a certain number
of relevant documents. Let us define a set of relevant counts
rR@j, k as the set of counts of relevant documents seen on
all such paths.2 In the example in Table 1, there is only one
possible way for a user to see 4 documents without reformu-
lating, and none of those documents are relevant; therefore
rR@1, 4 = {0}. There are three ways for a user to see 4
documents over two queries: {d1, d2, d3, d

′
1}; {d1, d2, d

′
1, d

′
2};

{d1, d
′
1, d

′
2, d

′
3}. These paths have 1, 2, and 3 relevant docu-

ments respectively. Therefore rR@2, 4 = {1, 2, 3}. All sets
rR for j = 1..3 and k = 1..5 are shown in Table 2; the size
of a set is

`
k−1
j−1

´
as described above.

We can then define session versions of precision and recall
by dividing the relevant counts rR@j, k by k (for precision)
or R (for recall). We will call these rPC@j, k and rRC@j, k.
This gives the session generalization to precision and recall:
precision and recall for each possible path through the re-
sults. In traditional systems-based evaluation there is only
one possible path of length k, and precision/recall for that
path is identical to precision/recall at rank k.

Precision is sometimes interpolated to a particular recall
point r by finding the first rank at which recall r is achieved,
then taking the maximum of all precisions at that rank or
deeper. Let us consider an analogous process for sessions by
defining precision at a particular recall point in a particular

2We use boldface to denote sets and italics to denote scalars.
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Figure 1: Reformulation precision-recall surface for
the example in Table 1.
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Figure 2: Reformulation precision-recall cross-
sections of Figure 1 for the example in Table 1.
Note that these are not precision-recall curves for
the three rankings independently.

reformulation. At recall 1/R in ~r2, there is a set of possible
precision values {1/2, 1/3, 1/4, ...}, each of which is achieved
by a user looking at k = 1, 2, 3, ... documents in ranking
1, then reformulating and looking at the first document in
ranking 2. At recall 2/R in ~r2, the set is {2/3, 2/4, 2/5, ...}.
Now we will define sPC@r, j as the maximum value of the
set of possible precisions at the first rank in ~rj at which
recall r is achieved. This reduces the amount of data to m·R
precision values (with m being the number of queries in the
static session) that reflect the best possible effectiveness a
user could experience. Note that this is not interpolation
in the traditional sense. sPC@1/R, 2 may still be less than
sPC@2/R, 2, which is not possible in the usual definition.

Once we have computed sPC@r, j for each r and j, we can
plot a“precision-recall surface”over reformulations. Figure 1
shows the surface for the example in Table 1 with R = 20
under the assumption that all relevant documents in rank-
ing 3 are unique (meaning there are five additional relevant
documents that were not retrieved). We can see that pre-
cision increases with both recall and reformulation number,
suggesting that the system is doing a better job with the
later queries. (It may be easier to read cross-sections of the
surface. They are shown in Figure 2.)

Finally, just as average precision is computed as the area
under the precision-recall curve, we can define a model-free
“session average precision” (sAP ) as the the volume under

reformulation order sAP
~r1, ~r2, ~r3 0.261
~r1, ~r3, ~r2 0.335
~r2, ~r1, ~r3 0.344
~r2, ~r3, ~r1 0.519
~r3, ~r1, ~r2 0.502
~r3, ~r2, ~r1 0.602

Table 3: Session average precisions for different per-
mutations of the three ranked lists in Table 1. A
system is rewarded for finding more relevant docu-
ments in earlier queries.

the precision-recall surface. An expression for sAP is:

sAP =
1

mR

RX
r=1

sPC@r/R, j

where sPC@r, j is the max of the set of all possible preci-
sions at the first point in ~rj at which recall r is achieved.
Computing sPC@r, j can be done with the O(nm) approach
described in Section 2.2:3 within the jth loop, calculate pre-
cision and recall r over the documents on the path to that
point; if precision is greater than the current known maxi-
mum for sPC@r, j, update sPC@r, j to that precision.

In this example the volume under the surface is 0.261.
To test whether sAP follows our intuition that it should be
greater when more relevant documents are found for earlier
queries, we calculate it for each permutation of the three
rankings in our example. The results are shown in Table 3.

4. MODEL-BASED SESSION EVALUATION
In the previous section we extended three traditional eval-

uation measures to the case of multi-query session collections
in a model-free fashion. The session-based system measures
capture the optimal contribution of a system to answer an
information need over an entire session. In this section we
look at the problem from a user perspective.

Note that our definition of sPC in the previous section
takes the maximum value of a set. We could instead take
the expected value; this has the advantage of using all of
the data as well as not assuming that a user will have the
optimal experience with the system. However, taking such
an expectation requires a probability distribution over paths;
formulating such a distribution requires a user model4.

To simplify the space of all possible browsing paths we
follow the user model described in Section 2: a user steps
down a ranked list of documents until some decision point.
It is important that any realization of the distribution over
possible paths allows for paths that end before the last re-
formulation in the static collection. Then, if Ω is the set
of all possible browsing paths that follow the simple user
model described earlier, P (ω) the probability of a certain
path ω ∈ Ω, and Mω a measure over the path ω, then we
define a session based measure as the expectation

esM =
X
ω∈Ω

P (ω)Mω

3There is also an O(nm) dynamic programming approach,
but we have not included it in this paper for reasons of space.
4A uniform distribution would not work, since most of the
paths are very long and therefore have approximately zero
precision.



4.1 Probability of browsing paths
As noted in Section 2, we can express a path ω as a set

of reformulation points.Let us therefore formulate P (ω =
{k1, k2, ..., ki}) as a joint probability distribution of a user
abandoning the session at reformulation i, while reformu-

lating at positions
−→
ref = {k1, k2, ..., ki−1}. Note that we do

not include ki, the abandonment cut-off at ranking i, in the
probability. For the sake of generalizing traditional mea-
sures, we will assume that once the user arrives at the ith
reformulation, they continue down that ranking as far as
necessary to compute the measure.

We express the probability of a path ω as,

P (ω) = P (ri,
−→
ref) = P (ri) · P (

−→
ref|ri)

Here we introduce a simplifying assumption: the reformu-
lation position is independent across the ranked lists 1..ri.

Then P (
−→
ref|ri) can be expressed as,

P (
−→
ref|ri) = P (k1|ri)P (k2|ri) · · ·P (ki−1|ri)

In general, we could make each reformulation point depen-
dent on the reformulation number and possibly even on the
relevance of documents in the ranking; in this work we have
elected to keep them independent for simplicity.

For the realization of the probability distribution over dif-
ferent browsing paths we follow Moffat and Zobel [10] in
their definition of ranked biased precision and use two geo-
metric distributions. The first gives the probability that the
ith reformulation is the last; it has an adjustable parameter
preform representing the probability that the user reformu-
lates again from their current query. They will only arrive
at reformulation i if they reformulate i− 1 times, so:

P (ri) = pi−1
reform(1− preform)

Similarly, the second distribution gives the probability that
the kth rank is a stopping or reformulation point with ad-
justable parameter pdown. A user will arrive at rank k only
after deciding to progress down k − 1 times, so:

P (k) = pk−1
down(1− pdown)

The probability of a path is then

P (ri,
−→
ref) = pi−1

reform(1− preform)

i−1Y
j=1

p
kj−1

down(1− pdown)

= P (ri)

i−1Y
j=1

P (kj)

Our definition of P (ri) may give non-zero probability to
a path that is not valid for a particular collection of static
sessions, e.g. one that ends at some point past the last (mth)
reformulation in the collection. To address this, we will trun-
cate the distribution P (ri) and renormalize it to ensure that
the probabilities to stop at different reformulations sum to
1. To do this we simply renormalize the probabilities from
1 to m by Pr{r ≤ ri} = 1− pm

reform. That is,

P ′(ri) =
pi−1
reform(1− preform)

1− pm
reform

We could similarly truncate and renormalize P (kj). How-
ever, paths that extend beyond the last retrieved document
for a reformulation (typically ranks beyond 1000) will have

very low probability and thus they will not contribute in any
significant way in the calculation of a measure.

4.2 Expectations over paths
Given a measure Mω to be computed over the documents

viewed on a particular path ω along with the probability dis-
tribution over all paths ω ∈ Ω, we can define a session mea-
sure as the expectation of Mω over the probabilistic space
of paths.

esM = EΩ[M ] =
X
ω∈Ω

P (ω)Mω

Let us consider a path-averaging generalization to preci-
sion at cut-off k. First define PC@k(ω) as the precision of
the first k documents experienced on path ω. Then:

esPC@k =
X
ω∈Ω

P (ω)PC@k(ω)

=
X
ω∈Ω

PC@k(ω)P ′(ri)

i−1Y
j=1

P (kj)

PC@k(ω) is the total proportion of relevant documents at
ranks 1..k1 in ~r1, 1..k2 in ~r2, and so on.

PC@k(ω) =
1

k

 
k1X

j=1

rel1j +

k2X
j=1

rel2j + · · ·+
kiX

j=1

relij

!
where ki, the abandonment cut-off at ranking i, is equal to
k− (k1 + k2 + · · ·+ ki−1). Plugging that into the expression
for E[PC@k] completes the formula.

Similarly, the expectations of recall after k documents can
be computed as

esRC@k =
1

R

X
ω∈Ω

RC@k(ω)P ′(ri)

i−1Y
j=1

P (kj)

where

RC@k(ω) =
1

R

 
k1X

j=1

rel1j + · · ·+
kiX

j=1

relij

!
and ki is defined as above.

A path-averaging generalization to average precision is:

esAP =
X
ω∈Ω

AP (ω)P ′(ri)

i−1Y
j=1

P (kj)

where AP (ω) is the average precision of the concatenated
list of documents on path ω.

We can continue to define any measure this way. We will
conclude with a path-averaging generalization to nDCG:

esnDCG@k =
X
ω∈Ω

nDCG@k(ω)P ′(ri)

i−1Y
j=1

P (kj)

where nDCG@k(ω) is the nDCG@k of the concatenated list.
All of the above formulations involve summing over paths

ω. In general, summing a function f(ω) over all paths can
be expressed in a brute-force way as:

X
ω∈Ω

f(ω) =

|r1|X
k1=1

|r2|X
k2=1

· · ·
|ri−1|X

ki−1=1

f({k1, k2, ..., ki−1})

Note that computing it involves on the order of |r1| × |r2| ×
· · · × |rm−1| = O(nm) steps.



4.3 Monte Carlo estimation
A running time of O(nm) is manageable, but it is not

fast, especially as m grows. Since our model for these mea-
sures is fully probabilistic, a faster alternative approach to
estimating them uses simulation. A Monte Carlo simulation
method allows the estimation of a measure via repeated ran-
dom sampling. Running a Monte Carlo experiment requires
defining a domain of possible inputs, generating inputs ran-
domly from the domain using specific probability distribu-
tions, performing a deterministic computation using the in-
puts, and finally aggregating the results of the individual
computations into the final result.

In the case of the user-model based measures proposed
above, the input space is the ranking ri at which the user
abandons the query and the reformulation cut-offs at all
previous queries {k1, ..., ki−1}.

Each of the above path-averaging measures can be thought
as the expected outcome of the following random experi-
ment:

1. Sample the last reformulation ri from P ′(rj).

2. Sample (k1, k2, ..., ki−1) i.i.d. from P (kj) to form a
path ω.

3. Create a ranked list of documents by concatenating
ranks 1...k1 from r1, 1...k2 from r2, ..., 1...ki−1 from
ri−1, and 1...n from ri. These are the documents seen
along path ω.

4. Output measure M over that ranked list.

This random experiment defines one round of the Monte
Carlo experiment. Executing the first two steps requires
sampling from a geometric distribution. This can be easily
performed assuming access to an algorithm that generates
pseudo-random numbers uniformly distributed in the inter-
val (0, 1). Regarding the distribution of the last reformula-
tion, since it is renormalized, we can first partition the inter-
val (0, 1) to ((0..P ′(r1)), (P

′(r1)..P
′(r1) + P ′(r2)), · · · , (1 −

P ′(rm)..1)). We then use the random number generator to
obtain a number in (0, 1), and output j if this number is in
the j-th partition. In the case of the cut-off distribution the
same process can be followed. As mentioned earlier we did
not renormalize this distribution and thus the last partition
does not end in 1, however renormalization can be easily per-
formed in the case of Monte Carlo by simply rejecting any
sample larger than the upper bound of the last partition.

Repeating the process above B times and averaging the
results gives an estimate of the expectation of measure M .
For most purposes B = 1000 (which will usually be much
less than nm) should be sufficient; we explore the errors in
estimates due to B in Section 6.

5. DUPLICATE DOCUMENTS
Our measures to this point make a strong assumption:

that retrieval systems return unique documents for each
query reformulation. Under this assumption, the concate-

nated ranked list of documents ~cl which corresponds to a
certain browsing path ω resembles a typical ranked list of
document in the standard evaluation paradigm. We cer-
tainly do not expect this assumption to hold in real systems;
it is likely that documents retrieved for a second query will
overlap with those retrieved for the first. When relaxing this

assumption,we need to consider how these duplicate docu-
ments should be treated from the perspective of the evalua-
tion measure.

The first question raised is whether documents repeated in
ranked lists for subsequent reformulations have any value for
a user. Järvelin et al. [6] noticed that in an empirical inter-
active search study conducted by Price et al. [12] searchers
overlooked documents in early queries but recognized them
in later reformulations. Due to this, the proposed sDCG
measure does not give any special treatment to duplicate
relevant documents; it considers them relevant regardless of
the number of times they have been seen before.

But measures with a recall component (such as average
precision or recall at k) cannot count duplicates in a sound
way. Since there are multiple possible paths through the
results, and these paths could have duplicate relevant doc-
uments, it is possible that more than R relevant documents
could be observed along any given path. The computed
measure may exceed the desired maximum value of 1.

We can instead consider duplicate documents nonrelevant
in all cases. This has certain implications as well. For one,
penalizing a retrieval system for returning duplicate doc-
uments may lead to systems that are less transparent to
their users. Imagine a user that reformulates a query and
expects to see previously observed relevant documents at
higher ranks than before. If they are not there, the user may
question whether the system can ever be useful to them.

Furthermore, by definition the expected measures reward
a retrieval system that respond in an optimal way to a pop-
ulation of users. These different users may very well follow
different browsing paths. In an actual retrieval setup, a sys-
tem can infer whether a document has been observed by a
user (e.g. by observing the users’ clicks). In the case of a
batch experiment, however, a certain document may be a
duplicate for one user but not for another, depending on the
browsing path each one of them has followed. This informa-
tion is hidden in the parameters of the particular evaluation
measure (which simulates the population of users). Tak-
ing these parameters into account a system could respond
optimally by removing the expected duplicate documents.
However, the need of such an inference process and a rank-
ing function that accounts for the average browsing path
is just an artifact of the batch nature of experiments. A
retrieval system running in the real world will not need to
employ such an algorithm.

Yang and Lad [16] take an approach in between the two ex-
tremes. Although they did not explicitly consider the prob-
lem of exact duplicates, the proposed measure is a measure
of information novelty over multi-query sessions and thus it
takes the typical approach other novelty measures take [4]
by defining information nuggets and discounting documents5

that contain the same relevant information nugget.
In this work we consider an alternative treatment of du-

plicates inspired by Sakai’s compressed ranked lists [14] and
Yilmaz & Aslam’s inducedAP [17]. When considering a path
ω out of the population of all paths, we construct the con-

catenated list ~cl that corresponds to this path. We then
walk down the concatenated list and simply remove dupli-
cate documents, effectively pushing subsequent documents

5The measure by Yang and Lad [16] was proposed for the
task of information distillation and thus it operates over
passages instead of documents; the same approach however
could be used for the case of documents.



one rank up. This way, we neither penalize systems for re-
peating information possibly useful to the user, nor do we
push unnecessary complexity to the retrieval system side.
Further, the measures still reward the retrieval of new rele-
vant documents. Note here that such an approach assumes
that a system ranks documents independent of each other
in a ranked list (probabilistic ranking principle [13]). If this
is not true, i.e. if ranking a document depends on previ-
ously ranked documents and the retrieval system is agnostic
to our removal policy then this may also lead to unsound
evaluation.

6. EXPERIMENTS
In this section we demonstrate the behavior of the pro-

posed measures. There is currently no “gold standard” for
session evaluation measures; our goal in this section is to
evaluate whether our measures provide information about
system effectiveness over a session and whether they cap-
ture different attributes of performance in a similar way to
traditional precision, recall, and average precision. We will
compare our measures to the session nDCG measure pro-
posed by Järvelin et al., though we consider none of these,
nor any other measure, to be the one true session measure.

We use two collections towards these goals: (a) the TREC
2010 Session track collection [7], and (b) the TREC-8 (1999)
Query track collection [2]. Though the latter is not a collec-
tion of multi-query sessions, we will find it useful to explore
properties of our measures. Both of these collections are
described in more detail below.

The instantiation of session nDCG@k we use is calculated
as follows: we start by concatenating the top k results from
each ranked list of results in the session. For each rank i in
the concatenated list, we compute the discounted gain as

DG@i =
2rel(i)−1

logb(i + (b− 1))

where b is a log base typically chosen to be 2. These are the
summands of DCG as implemented by Burges et al. [3] and
used by many others. We then apply an additional discount
to documents retrieved for later reformulations. For rank i
between 1 and k, there is no discount. For rank i between
k + 1 and 2k, the discount is 1/ logbq(2 + (bq− 1)), where bq
is the log base. In general, if the document at rank i came
from the jth reformulation, then

sDG@i =
1

logbq(j + (bq − 1))
DG@i

Session DCG is then the sum over sDG@i

sDCG@k =

mkX
i=1

2rel(i)−1

logbq(j + (bq − 1)) logb(i + (b− 1))

with j = b(i − 1)/kc, and m the length of the session. We
use bq = 4. This implementation resolves a problem present
in the original definition by Järvelin et al. [6] by which docu-
ments in top positions of an earlier ranked list are penalized
more than documents in later ranked lists.

As with the standard definition of DCG, we can also com-
pute an “ideal” score based on an optimal ranking of docu-
ments in decreasing order of relevance to the query and then
normalize sDCG by that ideal score to obtain nsDCG@k.

nsDCG@k essentially assumes a specific browsing path:
ranks 1 through k in each subsequent ranked list, thereby

giving a path of length mk. Therefore, we set the cut-offs
of our expected session measures to mk (with the excep-
tion of AP). For the computation of the expected session
measures the parameter pdown is set to 0.8 following the
recommendation by Zhang et al. [18]; in expectation, users
stop at rank 5. The parameter preform is set arbitrarily to
0.5. With m = 2 reformulations, the probability of a user
stopping at the first reformulation is then 67% and mov-
ing to the next reformulation 33%, which is not far off the
percentage of users reformulating their initial queries in the
Excite logs [15].

6.1 Session track collection
The Session track collection consists of a set of 150 two-

query sessions (initial query followed by one reformulation).
Out of the 150 sessions, 136 were judged. The judged 136
topics include 47 for which the reformulation involves greater
specification of the information need, 42 for which the re-
formulation involves more generalization, and 47 for which
the information need “drifts” slightly. In the case of spec-
ification and generalization, both the initial query and its
reformulation represent the same information need, while in
the case of drifting the two queries in the session represent
two different (but related) information needs. Given that
some of the proposed session measures make the assump-
tion of a single information need per session—these are the
recall-based measures such as AP and recall at cutoff k—we
drop the 47 drifting sessions from our experiments.

Each participating group submitted runs consisting of three
ranked lists of documents:

RL1 ranked results for the initial query;

RL2 ranked results for the query reformulation indepen-
dently of the initial query;

RL3 ranked results for the query reformulation when the
initial query was taken into consideration.

Thus, each submission consists of two pairs of runs over
the two-query session: RL1→RL2, and RL1→RL3. The
document corpus was the ClueWeb09 collection. Judging
was based on a shallow depth-10 pool from all submitted
ranked lists. Kanoulas et al. detail the collection further [7].

Figure 3 shows example precision-recall surfaces for two
submissions, CengageS10R3 [9] and RMITBase [8]. In both
cases there is a moderate improvement in performance from
the first query to the second. The decrease in precision is
rapid in both, but slightly less so in RMITBase. As a result,
though CengageS10R3 starts out with higher precisions at
lower recalls, the model-free mean sAP s are close: 0.240
and 0.225 respectively. In general, these surfaces, like tradi-
tional precision-recall curves, provide a good sense of relative
effectiveness differences between systems and where in the
ranking they occur.

We use the submitted RL1 and RL2 runs (27 submissions
in total) to compare the proposed model-based measures
with normalized session DCG. nsDCG is computed at cut-
off 10. We compute all measures in Section 2 with cut-off
2 · 10 = 20 (to ensure the same number of documents are
used). Scatter plots of nsDCG@10 versus expected session
nDCG@20 (esnDCG), PC@20 (esPC), RC@20 (esRC), and
AP (esAP) are shown in Figure 4. Each point in the plot
corresponds to a participant’s RL1→RL2 submission; mea-
sures are averaged over 89 topics. The strongest correlation



recall

0.0
0.2

0.4
0.6

0.8

1.0

re
fo

rm
ul

at
io

n

1.0

1.2

1.4

1.6

1.8

2.0

precision

0.0

0.2

0.4

0.6

0.8

1.0

recall

0.0
0.2

0.4
0.6

0.8

1.0

re
fo

rm
ul

at
io

n

1.0

1.2

1.4

1.6

1.8

2.0

precision

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Precision-recall surfaces for CengageS10R3 and RMITBase.
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Figure 4: Scatter plots of the mean performance of systems in the Session track for the session RL1→RL2.
The x-axis is sNDCG@10; the y-axis is expected session nDCG@20 (esnDCG), PC20 (esPC), RC@20 (esRC),
and AP (esAP) for the four plots from left to right and top to bottom.

is between esnDCG and snDCG (as expected). Interestingly,
esAP strongly disagrees with snDCG; this demonstrates that
esAP measures different aspects of system effectiveness over
sessions than snDCG. Table 4 shows τ correlations between
all the expected measures as well as the model-free sAP;
overall the correlations are within the range expected for

these measures with a relatively small number of input sys-
tems. They are high relative to random orderings, but low
enough that it is clear that all the measures are capturing
different aspects of effectiveness. esAP and sAP do not cor-
relate very well, but recall that sAP is based on maximums
while esAP is based on averages.



Kendall’s tau correlation
esRC esAP esnDCG sAP

esPC 0.88 0.79 0.93 0.78
esRC 0.80 0.84 0.87
esAP 0.72 0.78

esnDCG 0.74

Table 4: Kendall’s tau correlation across the four
expected session measures and sAP.

6.2 Query track collection
The Query track [2] was an effort to understand the system-

query-topic interaction often observed in IR experiments,
where certain systems perform well for certain queries but
under-perform for others. A set of 50 topics (topics 51-100
from the TREC-1 collection) was provided to participants;
they responded with a set of queries for each topic. The con-
structed queries were in one of the following forms, (a) very
short: 2-4 words based on the topic and few relevance judg-
ments; (b) sentences: 1-2 sentences using the topic and few
relevant documents; (c) sentences+feedback: 1-2 sentences
using only the relevant documents; and (d) weighted terms.
Overall 23 query sets were produced, each consisting of 50
queries corresponding to the 50 topics of TREC-1. Partici-
pants ran their retrieval systems over each of the query sets
and submitted results for each system for each query set.
We use subsets of the 23 query sets and the submitted runs
to simulate query sessions.

The goal of our first experiment is to empirically verify
that the proposed measures reward early retrieval of relevant
documents in the session. In this experiment we simulate
four sets of session retrieval algorithms over 50 two-query
sessions. The first simulated algorithm (“good”–“good”) per-
forms well on both the initial query and its reformulation
in a hypothetical query session; the second (“good”–“bad”)
performs well on the initial query but not on its reformu-
lation, the third (“bad”–“good”) does not perform well on
the initial query but does on its reformulation, and the last
(“bad”–“bad”) does not perform well on either queries.

To simulate these algorithms, we note that the systems
participating in the Query track performed particularly well
on short queries (with an average MAP of 0.227), while they
did not perform well on the sentence-feedback queries (av-
erage MAP of 0.146) [2]. Taking this into consideration we
simulate the best algorithm using runs over two short formu-
lations of the same query. In particular, the nine runs over
the query set named INQ1a with simulated reformulation
results from the nine runs over query set INQ1b (with aver-
age MAP equal to 0.110 and 0.127 respectively, as computed
by trec_eval) simulated a set of systems performing well
both over the initial query of a hypothetical session and its
reformulation. We simulate the worst system by runs over
two sentence-feedback formulations. In particular the runs
over query set INQ3a with reformulations being the runs
over query set INQ3b (with average MAP 0.078 and 0.072
respectively) simulated a set of systems that performed well
neither over the initial nor over the reformulated query. The
other two combinations—INQ1a to INQ3b and INQ3a to
INQ1b—simulated medium performance systems.6

What we expect to observe in this simulation is that ses-

6The query sets INQ1a, INQ1b, INQ3a, INQ3b were man-
ually constructed by students at UMass Amherst [2].

Average mean session measures
esMPC@20 esMRC@20 esMAP

“good”–“good” 0.378 0.036 0.122
“good”–“bad” 0.363 0.034 0.112
“bad”–“good” 0.271 0.023 0.083
“bad”–“bad” 0.254 0.022 0.073

Table 5: esPC@20, esRC@20, and esAP, each aver-
aged over nine Query track systems simulating four
session retrieval systems.

sion measures reward the “good”–“good” simulated systems
the most, followed by the “good”–“bad”, the “bad”–“good”
and finally the “bad”–“bad” systems. Table 5 shows the av-
erage mean session scores produced by three of the expected
session measures over the four simulated sets of retrieval al-
gorithms. The results verify the behavior of the proposed
measures. This is the exact same behavior we observed for
the sAP measure in Table 3.

We conclude by testing the accuracy of the Monte Carlo
method in computing the expected session measures. We
simulated a two-query session by randomly selecting two
sets of query formulations and their corresponding runs and
forming a session from those. We run our O(nm) exact al-
gorithm along with the Monte Carlo method. For the latter
we use B = 10, B = 100 and B = 1000 trials. The results
are illustrated in the left-hand plot in Figure 5, showing the
high accuracy of the Monte Carlo simulation even with as
few as 10 repetitions. Obviously, the accuracy of the method
depends on the length of the session together with the set
parameters pdown and preform. We did not test for different
parameters, however we did repeat the same process over 3-
query sessions. The results are illustrated at the right-hand
side plot in Figure 5. There is somewhat more variance but
even with B = 10 the results are very accurate.

7. CONCLUSIONS
In this work we considered the problem of evaluating re-

trieval systems over static query sessions. In our effort to
make as few assumptions about user behavior over a ses-
sion as possible, we proposed two families of measures: a
model-free family inspired by interpolated precision, and a
model-based family with a simple model of user interaction
described by paths through ranked results. With a novel ses-
sion test collection and a session collection simulated from
existing data, we showed that the measure behaviors cor-
respond to our intuitions about their traditional counter-
parts as well as our intuitions about systems that are able
to find more relevant documents for queries earlier in the
session. The measures capture different aspects of system
performance, and also capture different aspects than what
is captured by the primary alternative, snDCG.

They are surely other ways to generalize traditional eval-
uation measures and paradigms to session evaluation than
those we have presented. Our goal with this work is to de-
fine measures as intuitively as possible while keeping models
of user behavior simple. In the future we will want to con-
sider explicit models of when and why users reformulate: is
it based on the relevance of the documents they see? Does it
depend on how many times they have already reformulated?
Are they willing to go deeper down the ranking for a later
reformulation than an earlier one?
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Figure 5: Exact method versus Monte Carlo in the computation of expected session AP (esAP) for B = 10,
B = 100 and B = 1000, for 2 and 3 query sessions.

There are many cases we have not explicitly considered.
“Drifting” information needs, which were part of the TREC
2010 Session track, may require special treatment for eval-
uation since the set of relevant documents can change as
the need drifts. Furthermore, there are many examples of
sessions in which a query and its results serve to guide the
user in selecting future queries rather than immediately pro-
vide relevant documents; while we can apply our measures
to these types of sessions, they are clearly not designed to
measure a system’s effectiveness at completing them.

Deeper understanding of session measures and their rela-
tionship to the user experience will come from future work
on session test collections, application to “real” sessions in
query log data, and extensive experimentation and analysis.
We plan to continue all these lines of research in the future.
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