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Abstract

Research in Information Retrieval has traditionally focused on serving the best results for a single
query. In practice however users often enter queries in sessions of reformulations. The Sessions Track
at TREC 2010 implements an initial experiment to evaluate the effectiveness of retrieval systems over
single query reformulations.

1 Introduction

Research in Information Retrieval has traditionally focused on serving the best results for a query.But users
often begin an interaction with a search engine with a sufficiently ill-specified query that they will need to
reformulate before they find what they are looking for: early studies on web search query logs showed that
half of all Web users reformulated their initial query: 52% of the users in 1997 Excite data set, 45% of the
users in the 2001 Excite dataset [13]. A search engine may be able to better serve a user not by ranking
the most relevant results to each query in the sequence, but by ranking results that help “point the way” to
what the user is really looking for, or by complementing results from previous queries in the sequence with
new results, or in other currently-unanticipated ways.

The standard evaluation paradigm of controlled laboratory experiments is unable to assess the effectiveness of
retrieval systems to an actual user experience of querying with reformulations. On the other hand, interactive
evaluation is both noisy due to the high degrees of freedom of user interactions, and expensive due to its low
reusability and need for many test subjects. The TREC 2010 Session Track is an attempt to evaluate the
simplest form of user interaction with a retrieval engine: a single query reformulation.

2 Evaluation Tasks

We call a sequence of reformulations in service of satisfying an information need a “session”, and thes goal
of this track are: (G1) to test whether systems can improve their performance for a given query by using
a previous query, and (G2) to evaluate system performance over an entire query session instead of a single
query.

For this first year, we limited the focus of the track to sessions of two queries, and further limited the focus
to particular types of sessions (described in Section 3.2). This is partly for pragmatic reasons regarding
the difficulty of obtaining session data, and partly for reasons of experimental design and analysis: allowing
longer sessions introduces many more degrees of freedom, requiring more data from which to base conclusions.

A set of 150 query pairs (initial query, query reformulation) was provided to participants by NIST. For each
such pair the participants submitted 3 (three) ranked lists of documents for three experimental conditions,
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1. one over the initial query (RL1)

2. one over the query reformulation, ignoring the initial query (RL2)

3. one over the query reformulation taking into consideration the initial query (RL3)

By using the ranked lists (RL2) and (RL3) we evaluated the ability of systems to utilize prior history (G1).
By using the returned ranked lists (RL1) and (RL3) we evaluate the quality of ranking function over the
entire session (G2). Note that this was not be an interactive track. Query reformulations were provided
by NIST along with the initial queries. Further note that when retrieving results for (RL3) the only extra
information about the user’s intent is the initial query. This was a single-phase track, with no feedback
provided by the assessors.

3 Test Collection

3.1 Corpus

The track used the ClueWeb09 collection. The full collection consists of roughly 1 billion web pages, com-
prising approximately 25TB of uncompressed data (5TB compressed) in multiple languages. The dataset
was crawled from the Web during January and February 2009. Participants were encouraged to use the
entire collection, however submissions over the smaller “Category B” collection of 50 million documents were
accepted. Note that Category B submissions was evaluated as if they were Category A submissions.

3.2 Queries and Reformulations

There is a large volume of research regarding query reformulations which follows two lines of work: a
descriptive line that analyzes query logs and identifies a taxonomy of query reformulations based on certain
user actions over the initial query (e.g. [10, 1]) and a predictive line that trains different models over query
logs to predict good query reformulations (e.g. [6, 5, 12, 9]). Analyses of query logs have shown a number
of different types of query reformulations with three of them being consistent across different studies (e.g.
[6, 10]):

Specifications: the user enters a query, realizes the results are too broad or that they wanted a more
detailed level of information, and reformulates a more specific query.

Drifting/Parallel Reformulation: the user entered a query, then reformulated to another query with the
same level of specification but moved to a different aspect or facet of their information need.

Generalizations: the user enters a query, realizes that the results are too narrow or that they wanted a
wider range of information, and reformulated a more general query.

In the absence of query logs, Dang and Croft [3] simulated query reformulations by using anchor text,
which is readily available. In the Session Track we used a different approach. To construct the query pairs
(initial query, query reformulation) we started with the TREC 2009 and 2010 Web Track diversity topics.
This collection consists of topics that have a “main theme” and a series of “aspects” or “sub-topics”. The
Web Track queries were sampled from the query log of a commercial search engine and the sub-topics were
constructed by a clustering algorithm [11] run over these queries aggregating query reformulations occurring
in the same session. We used the aspect and main theme of these collection topics in a variety of combinations
to provide a simulation of an initial and second query. An example of part of a 2009 Web track query is
shown below.

<topic number="4" type="faceted">
<query>toilet</query>
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<description> Find information on buying, installing, and repairing
toilets.
</description>
<subtopic number="1" type="inf">
What different kinds of toilets exist, and how do they differ?

</subtopic>
<subtopic number="2" type="inf">
I’m looking for companies that manufacture residential toilets.

</subtopic>
<subtopic number="3" type="inf">
Where can I buy parts for American Standard toilets?

</subtopic>
<subtopic number="4" type="inf">
How do I fix a toilet that isn’t working properly?

</subtopic>
<subtopic number="5" type="inf">
What companies manufacture bidets?

</subtopic>
<subtopic number="6" type="inf">
I’m looking for a Kohler wall-hung toilet. Where can I buy one?

</subtopic>
</topic>

To construct specification reformulations (1) used the Web Track ¡query¿ section as the initial query, (2)
we selected one of the subtopics and used the ¡subtopic¿ section as the description of the actual information
need, and (3) we then extract keywords out of the subtopic description and used these keywords as the query
reformulation. For instance, in the example above we used the Web Track query “toilet” as the first query, we
selected one of the subtopics as the information need (“I’m looking for a Kohler wall-hung toilet. Where can
I buy one?”) and we extract the keyword “Kohler” and used it as the second query (query reformulation).
Essentially, this example simulates a user that is actually looking for a Kohler wall-hung toilet but he poses
a more general query to the search engine (“toilet”). Given that “toilet” is a quite general term the user
reformulates his query to “Kohler” to find web pages closer to his information need.

<topic number="1" reformtype="specification" source="webtrack2009">
<query>toilet</query>
<reformulation>Kohler</reformulation>
<description>I’m looking for a Kohler wall-hung toilet.

Where can I buy one?</description>
</topic>

To construct drifting reformulations (1) we selected two of the subtopics and used the ¡subtopic¿ sections
as the description of the two information needs, and (2) we then extract keywords out of the subtopic
descriptions and used these keywords as the first query and the query reformulation. For instance, in the
example above we selected “Where can I buy parts for American Standard toilets?” and “I’m looking for
a Kohler wall-hung toilet. Where can I buy one?” as the two information needs. Then we extracted the
keywords “American Standard” and “Kohler” and used them as the initial query and the query reformulation.
Essentially this reformulation simulates a user that first wants to buy some toilet parts from American
Standard but while he is browsing the results of the query or possibly other web pages he decides that he
also wants to purchase Kohler wall-hungs and thus there is a slight drifting in his information need.

<topic number="2" reformtype="drifting" source="webtrack2009">
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<query>American Standard</query>
<description>Where can I buy parts for American Standard toilets?</description
<reformulation>Kohler</reformulation>
<rdescription>I’m looking for a Kohler wall-hung toilet.

Where can I buy one?</rdescription>
</topic>

Finally, to construct generalization reformulations we followed a slightly more complicated process. The
reason is that the Web Track queries include queries that are under-specified and then subtopics that are
the exact specification of different information needs but it does not include over-specified or mis-specified
queries that could lead the user to generalize his initial query.

Thus in the first method to construct generalization reformulation (1) we selected one of the subtopics and
we extracted as many keywords as possible to construct an over specified query, e.g. (we selected “What
different kinds of toilets exist, and how do they differ?” and we extracted the keywords “different kinds of
toilets” which seems to be a lexical over-specification), (2) we used a subset of these keywords to generalize
the initial query (e.g. “toilet”). Essentially this reformulation simulates a user that first wanted to find what
different kinds of toilets exist, and how do they differ but he lexically over-specified his need, the returned
results were poor and thus reformulated his initial query to a more general one.

<topic number="3" reformtype="generalization" source="webtrack2009">
<query>different kinds of toilets</query>
<reformulation>toilets</reformulation>
<description> What different kinds of toilets exist,

and how do they differ?</description>
</topic>

The second method used was to essentially consider that a user mis-specifies his need to something very
narrow and then he generalizes. In this case (1) we selected one of the subtopics or query description from
the Web Track topics as the information need, (2) extracted keywords from a different subtopic that seemed
related but essentially it was a mis-specification of something very narrow, and (3) extracted keywords from
the subtopic used as information need.

<topic number="4" reformtype="generalization" source="webtrack2009">
<query>American Standard toilet</query>
<reformulation>toilet</reformulation>
<description>Find information on buying, installing,

and repairing toilets.</description>
</topic>

Furthermore, given that not all queries in the Web Track proved appropriate to construct query reformula-
tions we used some of the Million Query 2009 (MQ09) queries and built query reformualations and informa-
tion needs from scratch. The MQ09 queries was used as the initial queries. Often they were submitted to
a web search engine whose results were used as an assistance to create information needs. Queries from the
“Related Search” section of Bing were also used as an assistance to construct query reformulations. Often,
if the queries from the “Related Search” were not good examples one of them was selected, re-submitted to
Bing and the new “Related Search” section was used for assistance. Examples of such queries can be viewed
bellow.

<topic number="47" reformtype="specification" source="mqtrack2009">
<query>cuttle fish bone</query>
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Bauhaus University Weimar Gale, Cengage Learning
Hungarian Academy of Science RMIT University
The University of Melbourne University of Amsterdam
University of Arkansas at Little Rock University of Delaware
University of Essex University of Lugano

Table 1: Groups participating in the 2010 Sessions Track.

<reformulation>cuttlebone casting</reformulation>
<description>Find information about the cuttlebone metal casting

technique and how can it be used to create jewelry?</description>
</topic>

<topic number="38" reformtype="drifting" source="mqtrack2009">
<query>sun spot activity</query>
<description>What is sunspot activity and what causes it?</description>
<reformulation>sun spot earthquake</reformulation>
<rdescription>Can sunspot activity be used to predict earthquakes?

Are there any studies?</rdescription>
</topic>

<topic number="41" reformtype="generalization" source="mqtrack2009">
<query>history crossword</query>
<reformulation>history games</reformulation>
<description>Find printable history games to be used in a

history class.</description>
</topic>

A set of 150 (initial query, query reformulation) pairs1 were provided to participants, 52 of which were
specification reformulations, 50 were drifting reformulations and 48 were generalization reformulations.

4 Submissions

Sites were permitted to submit up to three runs. Each submitted run includes three separate ranked result
lists for all 150 topics. Files were named “runTag.RLn”, where “runTag” is a unique identifier for the site
and the particular submission, and “RLn” is RL1, RL2, or RL3, depending on the experimental condition.

The track received 27 runs from the 10 groups listed in Table 1. Seven sites submitted three runs and three
sites submitted two runs.

Section B at the end of the document summarizes the methods used by each of the participating sites. For
further details on the techniques used refer to the individual groups reports for the Session Track.

5 Session Evaluation

5.1 Relevance Judgments

Judging was done by assessors at NIST. The top 10 documents of all the ranked lists submitted by all
participants (i.e. RL1, RL2, and RL3) were pooled together for each one of the topics (depth-10 pooling). For

1Pairs, topics and sessions are used interchangeably in this document.
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each topic the NIST assessors judged documents with respect to one or two information needs simultaneously.
In the case of specification and generalization reformulations, both the initial query and its reformulation
were assumed to represent the same information need, and assessors judged all documents against that need.
In the case of drifting reformulations the query reformulation represented an information need different from
(but related to) the information need of the initial query, and thus judgments were made with respect to
both needs. (Note that the information needs were not provided to participants.)

Due to limited resources, topics assigned to each NIST assessor were prioritized by the size of the depth-10
pool – the smaller the pool size the higher the priority of the topic – and NIST assessors rotated between
the three types of query reformulations preserving this order. The judging process lasted approximately two
weeks and judgments were provided for 136 out of the 150 sessions. The IDs of the topics that were not
judged are the following: 24, 30, 35, 36, 40, 58, 70, 100, 114, 118, 120, 126, 130, and 136. The judged 136
topics include 47 specification, 47 drifting and 42 generalization reformulation types.

A total of 33,121 documents were judged, with 11,525 documents being judged with respect to two infor-
mation needs, resulting in 44,646 relevance judgments. Of the 44,646 judgments, 2,958 (6.6%) were highly
relevant, 4,798 (10.7%) were relevant, and 36,890 (82.7%) non-relevant.

The specification topics had an average of 15.5 highly relevant documents, 23.6 relevant, and 201 non-relevant.
The generalization topics had more relevant material, with an average 23.1 highly relevant documents, 40.5
relevant, and 181 non-relevant. The drifting topics had an average of 13.8 highly relevant, 20.1 relevant, and
211.9 non-relevant documents for the initial information need, and 12.8, 22.1, and 210.1 respectively for the
reformulated information need.

The format of the qrels file generated is

topicID 0 docID rel1.rel2

i.e. the typical qrels format except for the rel field that has been replaced by rel.rel. For generalization
and specification topics, the value on the left of the decimal is the relevance judgment, and the right value
is always -1. For drifting topics, the values are for the two information needs respectively.

5.2 Normalized session DCG

Järvelin et al. [8] extended the nDCG metric into a session metric that takes into account multiple interactive
queries. The metric discounts documents that appear lower in the ranked list for a given query and further
discounts documents that require query reformulations to be found. In a sense the new model on which the
session-based nDCG (nsDCG) is defined incorporates a cost for reformulating a query.

The session-based nDCG is defined as follows: for each query in a series of reformulations, one can compute
DCG, as defined above, in isolation of all other queries in the series, i.e. for a query q,

DCG@k(q) =
k∑

i=1

rel(i, q)
(1 + logb(i))

where b is the base of the logarithm of the discount function and controls the persistence or patience of the
user to move down the ranked list of documents for a given query. Each query in this series of reformulations
is penalized based on a similar discount as a function of the position q of the query in the series. Based on
that the session DCG (sDCG) for a query in position q is defined as,

sDCG@k(q) =
1

(1 + logbq(q))
∗DCG@k(q)
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where bq is the logarithm base for the query discount. The session DCG can be written then as,

sDCG@k(q) =
1

(1 + logbq(q))

Z∑
i=1

rel(i, q)
(1 + logb(i))

=
Z∑

i=1

rel(i, q)
(1 + logbq(q))(1 + logb(i))

As with the standard formulation of DCG, we can compute an “ideal” score based on an optimal ranking of
documents in decreasing order of relevance to the query, then normalize DCG by that ideal score.

5.3 Evaluation metrics for the Session Track

We have evaluated the submitted runs by three metrics, (a) nsDCG@10 as described above, (b) a variant that
penalizes duplicates in the second ranking (nsDCG dupes@10), and (c) nDCG10 of each submitted ranking.
The first two evaluate the entire session and thus for each one of the two metrics we compute an evaluation
score for RL1→RL2 (nsDCG@10.RL12) and an evaluation score for RL1→RL3 (nsDCG@10.RL13).

nsDCG@10 for RL1→RL3 is the official metric for (G2). Comparing the nsDCG@10 or nsDCG dupes@10
scores for RL1→RL2 and RL1→RL3, or the nDCG@10 scores for RL2 and RL3 we evaluate how well systems
performed with respect to (G1).

The specific instantiation of nsDCG10 used is :

10∑
r=1

2rel(r,RL1) − 1
(log2(r + 1)) ∗ (log4(1 + 3))

+
10∑

r=1

2rel(r,RL2/RL3) − 1
(log2(r + 10 + 1)) ∗ (log4(2 + 3))

where rel(r,RL1) is the relevance of the document in rank r in RL1 and rel(r,RL2/RL3) is the relevance of
the document at rank r in RL2 (or RL3). Note that the instantiation of nsDCG used is slightly different
than the one proposed by Järvelin et al. [8]. A detailed discussion on the choice of the discounting and the
implications of certain choice is given in section 7.3

nsDCG dupes@10 is similar to the nsDCG@10 except that duplicate documents in RL2@[1..10] and RL3@[1..10]
with respect to RL1@[1..10] (i.e. documents that appear in the top 10 ranks of RL2 and RL3 that have
previously appeared in the top 10 ranks of RL1) are considered non-relevant. Note that in the case of drifting
reformulations there are no duplicate documents since the reformulated query represents a different infor-
mation need that the one captured by the initial query and thus the two metrics, nsDCG and nsDCG dupes
are exactly the same.

Further note that in the case of specification and generalization the ideal sDCG differs between the two
metrics. The ideal sDCG@10 for snDCG@10 is computed by concatenating the top 10 components of the
idealDCG vector twice with each repeated result discounted according to the sDCG formula. Essentially, the
ideal DCG for each rank is the DCG corresponding to the optimal ranking of documents. Since, duplicate
documents are considered relevant by nsDCG, the optimal ranking is the same both for the initial query and
its reformulation. On the other hand the idealsDCG for snDCG dupes@10 is computed by concatenating the
idealDCG[1..10] with the idealDCG[11..20] and discounting appropriately. Since duplicate documents are
considered non-relevant in this case the optimal ranking is the one in which the best 10 documents appear
in ranks 1 to 10 in RL1 and the second best 10 documents appear in ranks 1 to 10 in RL2/RL3.

The reason for computing nsDCG dupes was the fact that one way of utilizing the initial query to produce a
better ranking for the query reformulation would be to remove from RL3 documents that appeared in RL1.
The snDCG metric does not award novelty in RL3. On the contrary, since retrieval systems that remove
duplicates need to find more relevant documents to populate RL3[1..10], nsDCG actually penalizes novelty.
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The instantiation of the nDCG@10 used was,

10∑
r=1

2rel(r,RL1/RL2/RL3) − 1
(log2(r + 1))

for the three ranked lists RL1, RL2 and RL3 in isolation.

6 Evaluation Results

In the sections below we present the results of the evaluation for the two goals of the track. We beginning
with the overall session evaluation, i.e. the goal (G2), which measures how well retrieval systems performed
over the entire session. Then we present the evaluation of the (G1) goal of the track, i.e. the ability of
retrieval systems to utilize past user queries to improve the results over the current query.

6.1 Session Evaluation: G2

Figure 1 shows the ranking of systems by nsDCG.RL13 and nsDCG dupes.RL13, i.e. the nsDCG for the
session RL1→RL3, grouped by participating sites. Table 2 reports the snDCG@10 scores for the session
RL1→RL3 over all sessions and the specification, generalization and drifting sessions in isolation. Runs are
sorted by snDCG@10.RL13 for all sessions. Some of the runs whose ranking over particular reformulation
types appears to significantly diverge from the over all sessions ranking are marked by boldface. As it can
be observed, overall, systems appear to perform better over the generalization and drifting sessions than the
specification ones. The Kendall’s τ correlations between the rankings for all the sessions, the specification,
the generalization and the drifting sessions appears in the table below. It is clear that there is a strong
“System – Reformulation Type” interaction effect.

Kendall’s τ
Specification Generalization Drifting

All sessions 0.8461538 0.8176638 0.8176638
Specification 0.7321937 0.6638177
Generalization 0.6695157
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Figure 1: Evaluation scores based on nsDCG@10 for all submitted runs for the ranked lists RL1 → RL3.
95% confidence intervals of the mean nsDCG@10 scores are also depicted in the plot.
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Run snDCG@10.RL13
all sessions Specification Generalization Drifting

CengageS10R1 0.2377 0.1827 0.2606 0.2723
CengageS10R2 0.2348 0.1870 0.2528 0.2665
CengageS10R3 0.2295 0.1631 0.2577 0.2708
essex3 0.2249 0.1481 0.2531 0.2763
UM10SibmA 0.2243 0.1445 0.2495 0.2816
essex1 0.2233 0.1456 0.2538 0.2738
UM10SibmbB 0.2200 0.1424 0.2434 0.2767
udelIndriASF 0.2104 0.1605 0.2362 0.2373
udelIndriB 0.2076 0.1570 0.2190 0.2480
USIRR2010 0.2044 0.1532 0.2648 0.2015
essex2 0.1993 0.1395 0.2190 0.2416
UM10SimpA 0.1894 0.1294 0.2221 0.2202
USIML052010 0.1856 0.1200 0.2499 0.1937
USIML092010 0.1787 0.1149 0.2419 0.1860
webis2010w 0.1724 0.1002 0.1890 0.2299
webis2010 0.1674 0.1114 0.1763 0.2156
RMITBase 0.1529 0.0939 0.1701 0.1966
RMITExp 0.1402 0.1199 0.1493 0.1523
uvaExt1 0.1321 0.1035 0.1694 0.1273
uvaExt2 0.1299 0.1108 0.1569 0.1247
uvaExt3 0.1282 0.1029 0.1666 0.1190
bpacad10s1 0.0827 0.0761 0.0819 0.0900
udelIndriA 0.0785 0.0612 0.0797 0.0946
bpacad10s2 0.0774 0.0653 0.0896 0.0785
CARDBNG 0.0648 0.0599 0.0553 0.0781
CARDWIKI 0.0593 0.0388 0.0552 0.0834
CARDWNET 0.0456 0.0208 0.0426 0.0731

Table 2: The snDCG@10 scores for the session RL1→RL3 over all sessions and the specification, generaliza-
tion and drifting sessions in isolation. Runs are sorted by snDCG@10.RL13 for all sessions. Some of the runs
whose ranking over particular reformulation types appears to significantly diverge from the over all sessions
ranking are marked by boldface.
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6.2 Session Evaluation: G1

In this section we present the results towards the goal (G1) of the session track. That is, whether retrieval
systems can utilize the history of user requests to increase their performance regarding the current request.
The history of user requests consists only of a single query, the initial query, while the current request is the
query reformulation. For each topic participants have submitted a ranked list over the query reformulation
ignoring the initial query (RL2) and a ranked list over the the query reformulation when the initial query
is taken into account. Comparing the performance of the retrieval systems between RL2 and RL3 can show
us whether retrieval systems could perform better when they utilized the initial query. Table 3 shows the
snDCG@10 and snDCG dupes@10 scores for RL1→RL2 and RL1→RL3 sessions along with the nDCG@10
scores for RL1, RL2 and RL3. The ↑ symbol denotes an increase in the performance of the retrieval system
when utilizing the initial query compared with the performance of the system when ignoring the initial query,
the ⇑ symbol denotes a statistically significant increase (when t-test applied), the ↓ symbol denotes a drop in
the performance while the ⇓ symbol denotes a significant drop. Systems are ordered by the nsDCG@10.RL12.
The same results can be viewed in Figures 5, 7, and 8. The ordering of the systems in the three figures is
by nsDCG@10.RL12, nsDCG dupes@10.RL12 and nDCG@10.RL2, respectively.

Focusing on the nsDCG@10 RL12→RL13 column 11 out of 27 runs improved their performance when the
initial query was considered compared to when it was ignored. Out of these 11 systems, only the RMITBase
system improved its performance significantly (with significance measures by a paired t-test). The essex1
and essex3 submissions also demonstrated an important increase in their performance without however being
statistically significant. On the other hand, 8 out of the 16 drops in performance were statistically significant.

Given that some participants chose to remove duplicate documents from RL3 with respect to RL1, we’ve
also computed nsDCG dupes@10, which considers documents that have previously appeared in RL1[1..10] as
non-relevant. The change in the performance of the systems wrt. to this metric can be viewed in the second
column of Table 3. An interesting thing to notice is that when comparing the absolute scores of nsDCG@10
and nsDCG dupes@10 it appears that considering duplicate documents as non-relevant actually increases
the performance of the retrieval systems. This is an artifact which comes from the fact that nsDCG@10
and nsDCG dupes@10 use different normalization (sDCG of the ideal ranked list). In principle the ideal
sDCG@10 is always larger than the ideal sDCG dupes@10, as we have described in section 5.2. Looking at
the sDCG@10 scores instead one can see that there is a number of duplicate documents retrieved over the
lists RL2 and RL3. When comparing the nsDCG@10 and nsDCG dupes@10 columns of the table there are
no disagreements regarding the change in the system performance when utilizing the initial query and when
not, apart from one, denoted with an asterisk (∗) at the right-most column of the table. There were at least
two submitted runs in which RL3 was simply the results of RL2 excluding the results of RL1 (UM10SibmbB
and essex2). As it can be viewed in the table penalizing duplicate documents did not alter the change in
the performance of these systems between RL2 and RL3. We hypothesis that this is due to the fact that
both submissions removed duplicate documents wrt to RL1[1..2000] instead of RL[1..10] making it extremely
hard to find so many novel relevant documents in the collection. (For more details one should look at the
individual reports of the University of Melbourne and the University of Essex.)

There are more disagreements between nsDCG@10 RL12→RL13 and nDCG@10 RL2→RL3. Opposite to the
disagreements between the nsDCG@10 and the nsDCG dupes@10, these disagreements are due to the choice
of the discounting for nsDCG used in our evaluations. (A detailed description is given in section 7.3. As
already mentioned in section 5.2, the instantiation of nsDCG used here discounts RL2[1..10] and RL3[1..10]
as if they were at rank 11 to 20 of RL1 (with an extra discounting due to the reformulation). The nDCG@10
on the other hand discounts RL2 and RL3 as usual, i.e. rank=1..20. Thus, for instance if in RL2 the
system has retrieved slightly less relevant documents than in RL3 but slightly higher in the ranked list then
the nDCG may penalize RL3 more than snDCG does and so when looking at nDCG one may see a drop
from RL2→RL3, while you see an increase from RL2→RL3 when looking at nsDCG. To demonstrate this
phenomenon assume the following two hypothetical RL2 and RL3 rankings.
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Submitted nsDCG@10 nsDCG dupes@10 nDCG@10
Run RL12 → RL13 RL12 → RL13 RL1 RL2 → RL3
UM10SibmA 0.2506 ⇓ 0.2243 0.2605 ⇓ 0.2326 0.2391 0.2631 ⇓ 0.1811
UM10SibmbB 0.2506 ⇓ 0.2200 0.2605 ⇓ 0.2283 0.2391 0.2631 ⇓ 0.1698
CengageS10R1 0.2355 ↑ 0.2377 0.2451 ↑ 0.2478 0.2177 0.2616 ↓ 0.2604 †
CengageS10R2 0.2329 ↑ 0.2348 0.2424 ↑ 0.2448 0.2147 0.2599 ↓ 0.2572 †
CengageS10R3 0.2291 ↑ 0.2295 0.2385 ↑ 0.2390 0.2096 0.2576 ↑ 0.2579
essex3 0.2154 ↑ 0.2249 0.2230 ↑ 0.2327 0.2077 0.2215 ↑ 0.2461
essex1 0.2154 ↑ 0.2234 0.2230 ↑ 0.2309 0.2077 0.2215 ↑ 0.2353
essex2 0.2154 ⇓ 0.1993 0.2230 ⇓ 0.2060 0.2077 0.2215 ⇓ 0.1700
UM10SimpA 0.2143 ⇓ 0.1894 0.2237 ⇓ 0.1980 0.2019 0.2341 ⇓ 0.1625
udelIndriASF 0.2098 ↑ 0.2104 0.2200 ↑ 0.2201 0.1956 0.2288 ↓ 0.2282 †
udelIndriB 0.2065 ↑ 0.2076 0.2160 ↑ 0.2170 0.1898 0.2308 ↑ 0.2358
USIRR2010 0.2043 ↑ 0.2044 0.2150 ↓ 0.2149 0.1895 0.2145 ↑ 0.2147 ∗
USIML052010 0.2043 ⇓ 0.1856 0.2150 ⇓ 0.1948 0.1895 0.2145 ⇓ 0.1649
USIML092010 0.2043 ⇓ 0.1787 0.2150 ⇓ 0.1875 0.1895 0.2145 ⇓ 0.1455
webis2010w 0.1796 ↓ 0.1724 0.1872 ↓ 0.1797 0.1638 0.2014 ↓ 0.1776
webis2010 0.1796 ⇓ 0.1674 0.1872 ⇓ 0.1747 0.1638 0.2014 ⇓ 0.1621
RMITExp 0.1435 ↓ 0.1402 0.1493 ↓ 0.1450 0.1289 0.1706 ↓ 0.1525
RMITBase 0.1375 ⇑ 0.1529 0.1427 ⇑ 0.1584 0.1246 0.1534 ↑ 0.1834 ‡
uvaExt1 0.1358 ↓ 0.1321 0.1437 ↓ 0.1399 0.1071 0.1890 ↓ 0.1773
uvaExt3 0.1262 ↑ 0.1282 0.1335 ↑ 0.1358 0.1071 0.1543 ↑ 0.1642
uvaExt2 0.1260 ↑ 0.1299 0.1334 ↑ 0.1374 0.1071 0.1623 ↑ 0.1714
bpacad10s1 0.0830 ↓ 0.0827 0.0874 ↓ 0.0870 0.0632 0.1122 ↓ 0.1077
bpacad10s2 0.0830 ↓ 0.0774 0.0874 ↓ 0.0812 0.0632 0.1122 ↓ 0.0997
udelIndriA 0.0761 ↑ 0.0785 0.0789 ↑ 0.0813 0.0626 0.1034 ↑ 0.1133
CARDBNG 0.0664 ↓ 0.0648 0.0690 ↓ 0.0679 0.0554 0.0900 ↓ 0.0825
CARDWIKI 0.0664 ↓ 0.0593 0.0690 ↓ 0.0619 0.0554 0.0900 ↓ 0.0632
CARDWNET 0.0664 ⇓ 0.0456 0.0690 ⇓ 0.0470 0.0554 0.0900 ⇓ 0.0263

Table 3: The snDCG@10 and snDCG dupes@10 scores for RL1→RL2 and RL1→RL3 sessions along with
the nDCG@10 scores for RL1, RL2 and RL3. The ↑ symbol denotes an increase in the performance of
the retrieval system when utilizing the initial query compared with the performance of the system when
ignoring the initial query, the Uparrowsymbol denotes a statistically significant increase (when t-test ap-
plied), the ↓ symbol denotes a drop in the performacen while the ⇓ symbol denotes a significant drop. The †
symbol at the left column denotes a disagreement between the nsDCG@10.RL12–to–nsDCG@10.RL13 and
the nDCG@10.RL2–to–nDCG@10.RL3 change of performance, a ‡ denotes a disagreement in the signifi-
cance of the change between the same two metrics while an ∗ symbol denotes a disagreement between the
nsDCG@10.RL12–to–nsDCG@10.RL13 and the nsDCG dupes@10.RL12–to–nsDCG dupes@10.RL13.
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RL2 : R R N N N N N N N N
RL3 : N N R R R N N N N N

The DCG@10.RL2 is 1.4048 while the DCG@10.RL3 is 1.1349, pointing out that RL2 is a better ranking
than RL3. The sDCG@10.RL2 (a component of the snDCG@10.RL12) is 0.473, while the sDCG@10.RL3 is
0.662, pointing out that RL3 is actually a better ranking than RL2.

A dagger (†) at the right-most column of the table denotes a disagreement between the nsDCG@10.RL12–to–
nsDCG@10.RL13 and the nDCG@10.RL2–to–nDCG@10.RL3 change of performance, while a double dagger
(‡) denotes a disagreement in the significance of the change between the same two metrics.

7 Analysis

7.1 System performance and type of reformulation

In this section we do some further analysis of the performance of the retrieval systems with respect to the
different types of reformulations.

Average number of relevant documents

Table 4 shows the number of relevant and highly relevant retrieved on average in RL1[1..10], RL2[1..10] and
RL3[1..10], along with the number of relevant and highly relevant novel documents retrieved on average in
RL2[1..10] and RL3[1..10] over all sessions, specification sessions, generalization sessions and drifting sessions.

Focusing on the RL1 column one can observe the difference on the average number of relevant documents
retrieved by each participating difference between the specification and the generalization/drifting reformu-
lations. Submitted runs retrieved much fewer relevant documents for the initial query of the specialization
sessions than the generalization or the drifting ones.

Focusing at each row of the table across RL1, RL2 and RL3 one can observe a clear increase in the number of
relevant and highly relevant documents when moving from RL1 to RL2/RL3 (except for the case of drifting
sessions). The larger increase appears in the case of specification sessions which implies that the initial query
in the case of specification sessions was quite hard to answer, while the reformulated one was handled by
retrieval systems better. This can be considered as a proof of validity for the constructed specification topics.
On the other hand the initial query of the generalization sessions seem to be handled already good enough
by the retrieval systems, which might indicate that the initial query in these topics was well-specified instead
of over-specified or mis-specified as indented.

Finally comparing the RL2/RL3 columns with the RL2/RL3 Novel ones one can observe that even though
participating runs retrieved a number of duplicate documents, especially in the case RL3, nevertheless most
of the retrieved documents in RL2 and RL3 seem to be “novel” (or at least not exact duplicates).

RL1 RL2 RL2 Novel RL3 RL3 Novel
rel hrel rel hrel rel hrel rel hrel rel hrel

All sessions 1.265 0.921 1.698 1.102 1.517 0.972 1.569 0.979 1.397 0.872
Specification 0.719 0.529 1.761 1.045 1.485 0.879 1.581 0.888 1.372 0.755
Generalization 1.755 1.012 2.050 1.341 1.774 1.106 1.858 1.250 1.533 1.052
Drifting 1.373 1.231 1.321 0.946 1.321 0.946 1.301 0.827 1.301 0.827

Table 4: Number of relevant and highly relevant retrieved on average in RL1[1..10], RL2[1..10] and RL3[1..10],
along with the number of relevant and highly relevant novel documents retrieved on average in RL2[1..10]
and RL3[1..10] over all sessions, specification sessions, genralization sessions and drifting sessions.
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Session evaluation per reformulation type

Table 5 reports the snDCG@10 scores for RL1→RL2 and RL1→RL3 sessions. The ↑ symbol denotes an
increase in the performance of the retrieval system when utilizing the initial query compared with the
performance of the system when ignoring the initial query, the ⇑symbol denotes a statistically significant
increase (when t-test applied), the ↓ symbol denotes a drop in the performance while the ⇓ symbol denotes
a significant drop.

Submitted nsDCG@10
Runs all sessions Specification Generalization Drifting

RL12 → RL13 RL12 → RL13 RL12 → RL13 RL12 → RL13

UM10SibmA 0.2506 ⇓ 0.2243 0.1674 ⇓ 0.1445 0.2804 ⇓ 0.2495 0.3073 ⇓ 0.2816
UM10SibmbB 0.2506 ⇓ 0.2200 0.1674 ⇓ 0.1424 0.2804 ⇓ 0.2434 0.3073 ⇓ 0.2767
CengageS10R1 0.2355 ↑ 0.2377 0.1756 ↑ 0.1827 0.2658 ↓ 0.2606 0.2683 ↑ 0.2723 †
CengageS10R2 0.2329 ↑ 0.2348 0.1793 ↑ 0.1870 0.2590 ↓ 0.2528 0.2632 ↑ 0.2665 †
CengageS10R3 0.2291 ↑ 0.2295 0.1619 ↑ 0.1631 0.2588 ↓ 0.2577 0.2697 ↑ 0.2708 †
essex3 0.2154 ↑ 0.2249 0.1563 ↓ 0.1481 0.2381 ↑ 0.2531 0.2542 ↑ 0.2763 +
essex1 0.2154 ↑ 0.2233 0.1563 ↓ 0.1456 0.2381 ↑ 0.2538 0.2542 ↑ 0.2738 +
essex2 0.2154 ⇓ 0.1993 0.1563 ⇓ 0.1395 0.2381 ↓ 0.2190 0.2542 ⇓ 0.2416
UM10SimpA 0.2143 ⇓ 0.1894 0.1546 ⇓ 0.1294 0.2452 ⇓ 0.2221 0.2463 ⇓ 0.2202
udelIndriASF 0.2098 ↑ 0.2104 0.1570 ↑ 0.1605 0.2376 ↓ 0.2363 0.2377 ↓ 0.2373 ∗
udelIndriB 0.2065 ↑ 0.2076 0.1552 ↑ 0.1567 0.2206 ↓ 0.2190 0.2451 ↑ 0.2480 †
USIRR2010 0.2043 ↑ 0.2044 0.1529 ↑ 0.1532 0.2702 ↓ 0.2648 0.1969 ↑ 0.2015 †
USIML052010 0.2043 ⇓ 0.1856 0.1529 ⇓ 0.1200 0.2702 ⇓ 0.2499 0.1969 ↓ 0.1937
USIML092010 0.2043 ⇓ 0.1787 0.1529 ⇓ 0.1149 0.2702 ⇓ 0.2419 0.1969 ↓ 0.1860
webis2010w 0.1796 ↓ 0.1724 0.1097 ↓ 0.1002 0.1868 ↑ 0.1889 0.2430 ↓ 0.2299 •
webis2010 0.1796 ⇓ 0.1674 0.1097 ↑ 0.1114 0.1868 ↓ 0.1763 0.2430 ⇓ 0.2156
RMITExp 0.1435 ↓ 0.1402 0.1334 ↓ 0.1199 0.1438 ↑ 0.1493 0.1533 ↓ 0.1523 •
RMITBase 0.1375 ⇑ 0.1529 0.0932 ↑ 0.0939 0.1501 ⇑ 0.1701 0.1705 ↑ 0.1966

√

uvaExt1 0.1358 ↓ 0.1321 0.1153 ↓ 0.1035 0.1689 ↑ 0.1694 0.1267 ↑ 0.1273
uvaExt3 0.1262 ↑ 0.1282 0.1044 ↓ 0.1029 0.1492 ↑ 0.1666 0.1273 ↓ 0.1190
uvaExt2 0.1260 ↑ 0.1299 0.1040 ↑ 0.1109 0.1558 ↑ 0.1569 0.1213 ↑ 0.1247

√

bpacad10s2 0.0830 ↓ 0.0774 0.0760 ↓ 0.0653 0.0821 ↑ 0.0896 0.0908 ↓ 0.0785 •
bpacad10s1 0.0830 ↓ 0.0827 0.0760 ↑ 0.0761 0.0821 ↓ 0.0819 0.0908 ↓ 0.0900
udelIndriA 0.0761 ↑ 0.0785 0.0592 ↑ 0.0612 0.0811 ↓ 0.0797 0.0884 ↑ 0.0946 †
CARDBNG 0.0664 ↓ 0.0648 0.0492 ↑ 0.0599 0.0656 ↓ 0.0553 0.0841 ↓ 0.0781
CARDWIKI 0.0664 ↓ 0.0593 0.0492 ↓ 0.0388 0.0656 ↓ 0.0552 0.0841 ↓ 0.0834
CARDWNET 0.0664 ↓ 0.0456 0.0492 ⇓ 0.0208 0.0656 ⇓ 0.0426 0.0841 ↓ 0.0731

Table 5: The snDCG@10 scores for RL1→RL2 and RL1→RL3 sessions. The ↑ symbol denotes an increase in
the performance of the retrieval system when utilizing the initial query compared with the performance of the
system when ignoring the initial query, the Uparrowsymbol denotes a statistically significant increase (when
t-test applied), the ↓ symbol denotes a drop in the performacen while the ⇓ symbol denotes a significant
drop. The † symbol denotes runs that improved over the specification and generalization sessions but didn’t
over the drifting, the + symbol denores runs that improved over the generalization and drifting but not over
the specification, the • symbol denotes runs that improved over generalizations only, the ∗ symbol denotes
runs that improved over the specification only, while the

√
symbol denotes runs that improved over all types.

One can observe a number of patterns across all the runs by examining the improvements and drops of the
performance over the three reformulation types. Some of those patterns have been noted by the symbols
at the right-most column of the table. The dagger (†) denotes runs that improved over the specification
and generalization sessions but didn’t over the drifting, the plus (+) denotes runs that improved over
the generalization and drifting but not over the specification, the bullet (•) denotes runs that improved
over generalizations only, the asterisk (∗) denotes runs that improved over the specification only, while
the tick (

√
) denotes runs that improved over all types. These patterns alone indicate a strong “system–
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reformulation type” effect, with some systems well utilizing the initial query to improve their performance
on the reformulated one for certain reformulation types but on the same time dropping their performance
on others.

Figures 5–8 at the end of this document also illustrate the change of the system performance as measures
by nsDCG@10, nsDCG dupes@10 and nDCG@10.

7.2 Analysis over queries

Figure 2 illustrate the hardness of the initial query as measured by the average nDCG@10.RL1 over all
queries. Figure 3 illustrates the query hardness both of the initial query (left-hand side plot) and the query
reformulation (right-hand side plot) as measured by the average nDCG@10.RL1 and nDCG@10.RL2 over the
three reformulation types. As it can be observed by the two figures the initial queries were in general hard
queries. The initial queries of the specialization sessions appear to be the hardest ones, and thus they offer a
larger margin of improvement of performance over the reformulated query. On the contrary the initial query
of generalization sessions seems to be well specified, even though an improvement over the reformulated
query can be observed on average.
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Figure 2: Query hardness measured by the average nDCG@10 over all session.

7.3 A detailed discussion on nsDCG discounting and logarithm bases

In the framework used to define typical nDCG metric, relevance scores are mapped to relevance grades,
e.g. a score of 3 is given to highly relevant documents, a score of 2 to fairly relevant documents and so
on. Relevance scores are viewed as the gain returned to a user when examining the document. Thus, the
relative value of relevance scores dictates how more valuable for instance a highly relevant document is to
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Figure 3: Query hardness measured by the average nDCG@10 over initial query (RL1) and query reformu-
lation (RL2) for the three reformulation types.

the user than a marginally relevant. Even though, relevance scores were used directly as gains when nDCG
was originally defined, alternative gain functions that map gain values to relevance scores have been used.
To account for late arrival of relevant documents, gains are then discounted by a function of the rank.
The discount function is viewed as an indication of the patience of a user to step down the ranked list of
documents. In other words, it expresses the probability of a user seeing a document at a certain rank. The
discounted gains are then summed progressively from rank 1 to k and this discounted cumulative gain is
normalized to the range of 0 to 1, resulting in the normalized discounted cumulative gain (nDCG).

The original instantiation of nDCG, as it appeared in Järvelin and Kekäläinen [7], can be computed as,

nDCG@k =
DCG@k

optDCG@k
where DCG@k =

b∑
i=1

rel(1) +
k∑

i=b+1

rel(i)/ logb(i)

where rel(i) is the relevance score of the document at rank i, k is an arbitrary cut-off rank and optDCG
denotes the DCG value for an ideal ranked list. The logarithm base b controls the severity of the discount
function; the smaller the base the less patient the user modeled is. The base 2 logarithm is the one that has
mostly appeared in the literature.

Note that the afore-described instantiation of nDCG does not discount the first b + 1 documents in the
ranked list. To cope with this a number of different discount functions have been used. Similar to discount
functions a number of different gain functions have also appeared in the literature. For instance, in Burges
et al. [2] DCG was computed as,

DCG@k =
k∑

i=1

2rel(i)−1

log2(i + 1)

while in Järvelin et al. [8] DCG was computed as,
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Figure 4: Different discounts for top 10 documents in the first query and the query reformulation. The
discounts are shown for the two queries in isolation, starting from rank 1 in both cases.

DCG@k =
k∑

i=1

rel(i)
(1 + log2(i))

The session-based nDCG has been proposed to incorporate multiple queries in an interactive retrieval sce-
nario, in which a user moves down a ranked list of documents and at some cut-off rank, she/he reformulates
the query. In that case DCG is computed at the reformulation cut-off for each query and the stopping cut-off
for the last reformulation. In the case of Sessions Track, the reformulation cut-off is not known since it is
not an interactive track. Given that a fixed reformulation cut-off has been selected at rank 10. That is, a
user is assumed to reformulate his query after observing the document at rank 10.

A question that needs to be answered is how should one select the logarithm bases. As mentioned earlier,
in the case of nDCG the logarithm base captures different search scenarios (e.g. precision vs. recall-orient
retrieval, etc.) and users (patient vs. impatient users). In the case of nsDCG the logarithm bases play
a similar role, nevertheless there is a constraint of how to set the bases. Under a realistic scenario, the
documents in the ranked list for query q should not receive discounting larger the documents in the ranked
list for query q + m, for m ≥ 1.

Given that the reformulation cut-off in Sessions Track is set at rank 10, the maximum penalty received by
a document in query q is the penalty of the last document before the reformulation, i.e. the document at
rank 10. The penalty that this document receives is,

(1 + logb10) ∗ (1 + logbqq)

The minimum penalty that a document receives for a query q + m is the penalty that the top document of
the query q + 1 receives, thus the penalty of that document is,

(1 + logb1) ∗ (1 + logbq(q + 1))
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Since we only have two queries in the session track, q = 1 and thus q + 1 = 2. By replacing the q’s in the
above formulas we get that

(1 + logb10) ∗ (1 + logbq1) should be less than (1 + logb1) ∗ (1 + logbq2)

Solving the inequality for b and setting bq = 2 results in b > 10. By repeating the above calculations for the
discount function in Burges et al. [2] we find that for bq = 2, b should be at least 6.

As one can notice the afore-derived logarithm bases are much larger than the typical base of 2 used in most
implementations of nDCG. An alternative instantiation of a session-based nDCG could be defined as follows:
since we assume that a user will never look beyond rank 10 in any query we can concatenate the top 10
documents of the query q + 1 at the bottom of the top 10 documents of the query q and essentially simply
compute nDCG@(10*q). In the case of the session track this is nDCG@20. Naturally, documents after the
user’s reformulation will be penalized more than the ones before the reformulation and we can select the base
of the discounting logarithm without any constraints. Moreover we can further penalize the reformulated
ranked list by the position of the query in a series of reformulations as in [8].

Nevertheless, in this instantiation of the session-based nDCG the relative discount between two consecutive
documents is different for each query. This can be view in Figure 4. The discounts of the RL1[1..10] and
RL2/RL3[1..10] are shown in isolation to make the comparison of the relative drop of the weight for each
document in the two ranked lists.

8 Conclusions

This paper describes results and analysis of the first year of the TREC Session Track. The main conclusion is
that task G2—improving results for a second query given only the first query—is difficult; few groups were
able to show any improvement, and no group had a statistically significant improvement. Further academic
study of this problem will almost certainly require some kind of interaction data.

We observed a strong interaction between system and reformulation type. This may partly be a result of
lack of training data: groups could know very little about how their systems would perform on the different
types. If we use the same types next year we may see stronger improvements.

There are many ways the user model, data, and evaluation methodology could be improved, and we intend
to tackle these problems in the second year. As a pilot study for the problem, we believe the data shows the
task and track were interesting and worthy of further study.
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A Plots of the nsDCG, nsDCG dupes, and nDCG scores for all
sessions and the three reformulation types
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Figure 5: Evaluation scores based on nsDCG@10 for all submitted runs for the ranked lists RL1 → RL2
and RL1 → RL3. Arrows indicate the change in the evaluations score between the two ranked lists for each
one of the submitted runs. Thick solid arrows indicate statistically significant changes according to paired
two-sided Student t-test.
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Figure 6: Evaluation scores based on nsDCG@10 for all submitted runs for the ranked lists RL1 → RL2 and
RL1 → RL3 for specification, generalization and drifting-reformulation sessions.
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Figure 7: Evaluation scores based on nsDCG dupes@10 for all submitted runs for the ranked lists RL1 →
RL2 and RL1 → RL3. Duplicate documents wrt. RL1 are considered non-relevant. Arrows indicate the
change in the evaluations score between the two ranked lists for each one of the submitted runs. Thick solid
arrows indicate statistically significant changes according to paired two-sided Student t-test. Scores are also
shown for specification and generalization-reformulation sessions. The ones for the drifting-reformulation
sessions are exactly the same as the nsDCG@10.
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Figure 8: Evaluation scores based on nDCG@10 for all submitted runs for the ranked lists RL2 and RL3.
Arrows indicate the change in the evaluations score between the two ranked lists for each one of the submitted
runs. Thick solid arrows indicate statistically significant changes according to paired two-sided Student t-test.
Scores are also shown for specification, generalization and drifting-reformulation sessions.
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B Descriptions of Submitted Runs

Each of the methods used by each one of the groups that participated in the track is summarized below. For
further details on the techniques used refer to the individual groups reports for the Session Track.

Bauhaus University Weimar: The Webis group from the Bauhaus University Weimar submitted two
runs, webis2010 and webis2010w. The participants took a two steps approach. In a preprocessing phase
they used query segmentation, comparing possible query segments against the Google n-gram collection. In
the second phase queries were submitted to the Carnegie Mellon ClueWeb search engine and run against
the Category B ClueWeb collection. The webis2010 run applied a maximum keyword framework in which
for each query or query session all query terms are considered and the longest query that has a reasonable
number of hits (between 1 and 1000) is selected to better represent the user’s information need. In the case
that all queries returned more than 1000 results then the complete query containing all terms along a session
was used. The webis2010w run used different term weights in the Indri query language to cope with case
where query terms were added or deleted during the query reformulation. Query terms that only appeared in
the first query were given a weight of 0.5, those that appeared only in the second query were given a weight
of 2 and those that appeared in both queries were given a weight of 1. It was noticed that due to short
sessions the maximum query algorithm would often times select all query terms as the maximum query.

Gale, Cengage Learning: The Cengage Learning group submitted three runs, CengageS10R1, CengageS10R2,
and CengageS10R3. The participants indexed the Category B subset of the ClueWeb09 collection using
Lucene. A number of different techniques were then used for their submissions:

Query Term Weighting : Query term weights we applied depending upon which query the occurred in.
Query terms were divided into three different categories: terms that appear only in the first query, terms
that appear only in the second query, and terms that appear in both queries. Through experimentation, it
was found that the best weights for these three groups were dependent upon the type of reformulation. This
approach necessitated the ability to automatically categorize query pairs. A number of different techniques
were used for this purpose.

Category Re-ranking : Query and documents were first classified over the Open Directory Project (ODP)
categories. Every category in the ODP was indexed against its title and the descriptions of all the pages
categorized under it. To categorize a query or document, the text of that query or document was submitted
to the ODP index and a list of search results was returned with a retrieval score for each result. The top
ten results were selected as the best category matches for the query and were given a weight proportional to
the retrieval score returned by Lucene.

Query Expansion : (a) Usage Log Query Expansion : For each query a list of related search terms was
produced by mining the usage logs from Cengage Learning products. The term collocation formula was
similar in concept to the tf-idf weighting scheme, in that it rewards frequently co-occurring terms, but
minimizes the impact of the most common search terms. Expansion terms were sought for all possible
sub-queries, with expansion terms for longer phrases receiving a bonus based on that length. (b) Corpus
Collocation Query Expansion : Corpus-based collocation expansion was done very similarly to usage log-
based collocation expansion. The major difference is in how the expansion terms were collected. Cengage
Learning maintains a collocation database. This database was compiled against large portions of Cengage
Learning’s digital material and could return a list of the fifty most common words and phrases that appear
near a given term.(c) WordNet Expansion : The words in the query needed to be resolved as to which sense
of the word they referred by determining which sense of the word is most similar to the other words in the
query. We created a measure which incorporated WordNet’s tag count, a measure of how often each sense
was encountered in the tagging of corpora.

The CengageS10R1 submission used Query Term Weighting and Corpus terms collocation expansion, the
CengageS10R2 used Term weighting, Usage-log expansion, Corpus collocation expansion, Pseudo-relevance
expansion and the CengageS10R3 used WordNet expansion and Category re-ranking.

Hungarian Academy of Science: The Hungarian Academy of Science group submitted two runs, bpacad10s1
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and bpacad10s2. The entire ClueWeb corpus was used. For the RL1 and RL2 the AND Boolean operator
was used to construct a new query out of the original query and its reformulation and documents were ranked
by Okapi BM25. For the RL3, documents in the RL2 list were re-ranked based on the reformulation type
and whether they occurred in RL1 or not – bpacad10s1. The reformulation type was determined from the
surface form of the question. The bpacad10s2 submission was produced by the weighted union of the RL1
and RL2 result lists.

RMIT University: The RMIT group submitted two runs, RMITBase and RMITExp. The experiments were
run on the ClueWeb Category B collection. Indexing and searching was done with the Lemur toolkit (v
4.12). Dirichlet-smoothed language model was used for ranking. In the RMITBase submission for the RL1
and RL2 the first query and its reformulation was used respectively. For the RL3 the union of the query
terms from both queries were used. In the RMITExp the queries (first query, reformulation and union of their
terms) were first submitted to Google to obtain “related search” suggestions. The union of the query terms
of the Google query suggestions and the three aforementioned queries were then run against the ClueWeb
dataset.

The University of Melbourne: The University of Melbourne group submitted three runs, UM10SimpA,
UM10SibmA, and UM10SibmB, using the entire ClueWeb09 corpus. Regarding the retrieval methods for RL1
and RL2, the UM10SimpA was a content-only run, and original impact model was employed for similarity
computation. For the other two runs, the impact-based version of BM25 was employed. Moreover, the
similarity score was a combination of content (50%), incoming anchor (25%) and PageRank (25%) scores.
For all three runs, the documents with Waterloo spam scores of 30% or less were discarded from the results.
The RL3 result were just the merging of RL1 and RL2, with two merging methods - A and B. In the merging
method A, which was applied to UM10SimpA and UM10SibmA, a similarity degree s between the two respective
queries was calculated, and the score S3 is S2− s ∗ S1, where S1, S2, S3 are scores for RL1, RL2 and RL3,
respectively. In the merging method B, which applied to UM10SibmB, S3 was simply S2− S1.

University of Amsterdam: The University of Amsterdam group submitted three runs, uvaExt1, uvaExt2,
and uvaExt3 using the entire ClueWeb09 corpus. The experiments by UAms focused on the use of blind
relevance feedback to bias a follow-up query towards or against the topics covered in documents that were
returned to the user in response to the original query. Blind relevance feedback takes the most discriminative
terms from a set of documents retrieved for a query, and uses these to build a query model that incorporates
information about the topic underlying the documents. These experiments followed the intuition that for
original queries, when no context for disambiguation is available, diverse result lists should be presented,
that have a high chance of answering any aspect of the information need underlying a query. Once more
context is available, this is used to bias results towards the relevant aspects of the query using blind relevance
feedback. Three methods for biasing results for the follow-up query were explored. First, it was assumed
that results returned for the original query were helpful and can be used to focus or disambiguate results for
the follow-up query. Thus, feedback terms extracted from the top-ranked documents of the original query
were used to expand the follow-up query – uvaExt1. Second, the assumption that results for the original
query were not helpful was covered. The set of expansion terms generated from the top-ranked documents
returned for the follow-up query was taken as a base set, and the feedback terms that were generated using
the original query were removed – uvaExt2. Finally, UAms considered that the underlying topic may best be
represented by both queries, and used the feedback terms generated by both queries to expand the follow-up
query – uvaExt3. The system was implemented based on the Indri retrieval engine. Retrieval runs for
the original queries (RL1) were generated by interpolating language modeling and phrase-based retrieval
scores. Based on those runs, diversification was performed using the maximum marginal relevance method
(MRR) with clusters obtained by latent Dirichlet allocation (LDA). For the follow-up queries where no
additional context is taken into account (RL2), three different methods are explored: (1) language modeling
+ phrase-based retrieval – uvaExt1, (2) diversification using pseudo-relevance feedback – uvaExt2, and (3)
diversification as for the original query (using MRR and LDA) – uvaExt3. From these individual runs,
runs that combine information using the original and the follow-up query (RL3) are generated using the
pseudo-relevance methods described above.

24



University of Arkansas at Little Rock: The University of Arkansas group submitted three runs using the
full ClueWeb09 corpus, CARDBNG, CARDWIKI, and CARDWNET. No query processing was performed for RL1 and
RL2. Regarding RL3, the CARDBNG submission used the Bing search engine to categorize the reformulation
type (generic/specific/drifting etc.) and used query expansion according to categorization above. The
CARDWIKI used the Wikipedia search engine to categorize the reformulation type query expansion according
to the categorization. The CARDWNET used the Wordnet dictionary for query expansion of the intersection
and the union of the original query and its reformulation query terms.

University of Delaware: The University of Delaware submitted three runs using the same baseline retrieval
method on three different subsets of the ClueWeb09 collection: the full Category A set, the Category A set
filtered for spam pages using the Waterloo spam scores, and the Category B set. The RL3 submission
estimated a probability that a document in RL2 would be viewed by a user twice (once for the first query,
once for the second), and scaled the document’s score down accordingly.

University of Essex : The University of Essex submitted three runs, essex1, essex2, and essex3. In
all their runs they used the publicly available Carnegie Mellon ClueWeb search engine. For the ranked lists
RL1, RL2 queries were submitted as they are to the search engine which in return used the Query Likelihood
model to retrieve a ranked list of documents. The Waterloo Spam Rankings for the ClueWeb09 Dataset was
used to filter the spam documents from the ranked lists. The essex1 run is the first baseline method to
retrieve ranked list RL3, in which a new query consisting of both queries in the session was submitted to the
Indri search engine. The essex2 run is the second baseline method to retrieve ranked list RL3. It reflects
on the assumption that the user is not satisfied with the first set of results and that is why she reformulated
her original query. In this baseline the participants use a naive way to utilize the original query by filtering
the retrieved documents for the reformulated query in the session. The filtering works simply by eliminating
the documents which appear in the first ranked list. In essex3 a method for extracting useful terms and
phrases to expand the reformulated query in the session was used. This method stems from previous work
in using query logs to extract related queries and the group’s past work in the AutoAdapt project to learn
domain models from query logs. Due the lack of availability of query logs an anchor log constructed from
the same dataset (the ClueWeb09 category B dataset) was used to simulate the query log. The anchor log
was extracted and made publicly available by the University of Twente. Using the anchor log they extract
the top common associated queries of both queries in the session using Fonseca’s association rules [4]. Then
they expanded the reformulated query with the extracted phrases or terms and the original query giving
higher weights to the reformulated query.

University of Lugano : The University of Lugano group submitted three runs, USIML052010, USIML092010,
and USIRR2010. The Category B subset of the ClueWeb was indexed with the Terrier information retrieval
system and used for the retrieval. The ranked lists RL1 and RL2 for all the three submitted runs were
generated by using the original query and its reformulation, respectively and scoring documents by the
BM25 implementation of Terrier. With respect to RL3, two approaches were used. In the first approach
the third ranking (RL3) was generated by scoring documents according to the weighted summation of
the reciprocal ranks of documents in RL1 and RL2, where the weight given to documents from RL1 was
negative and RL2 was positive. Thus the score for a document d was computed as follows: score(d,RL3) =
α ∗ (1/rank(d,RL1)) + (1 + α) ∗ (1/rank(d, RL2)). If a document was not present in one of the ranked lists,
its reciprocal rank was set to 0. The parameter α was empirically set to 0.2 – USIRR2010. In the second
approach the relevance model for the first and second query was build using the top N ranked documents
from RL1 and RL2 as the pseudo-relevant documents (denoted PR1 and PR2). The relevance models R1
and R2 were estimated by averaging the relative frequencies for terms across the pseudo-relevant documents.
The R1 estimates were smoothed with a background language model based on collection term frequency
estimates. The goal of the Lugano group was to highlight words from the term distribution of R2 that are
rare in the term distribution of R1 in order to reduce the number of documents from RL1 that are present
in RL3. To this end,term probabilities in R2 were weighted by their relative information in R2 and R1 to
calculate a new query model R3: p(w|R3) ∝ p(w|R2) ∗ log(p(w|R2)/p(w|R1)). The normalizing constant
in this case is simply the Kullback-Leibler divergence between R2 and R1. After obtaining the new term
distribution, the top K terms were selected from R3 and submitted as a weighted query to Terrier again using
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the BM25 retrieval function. In this way two runs were generated by varying the effect of the background
smoothing, USIML052010 and USIML092010.
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