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ABSTRACT
We examine the context of significance tests in offline retrieval
experiments. Our Information Retrieval (IR) community is notable
for its experimental rigour: the use of statistical significance is
grows across our publications. However, we show that ignoring the
context of a test risks Type I errors, leading to potential publication
bias. We examine two contexts: multiple testing and the types of the
retrieval systems being compared. Our results show that multiple
testing corrections are critical for experimental work. In addition,
we find that past research on the reliability of test collections maybe
flawed owing to the type of systems examined. The latter result has
not been shown before. Together our results suggest substantial
numbers of Type I errors in offline IR experiments. We detail a
methodology to alleviate the errors.

CCS CONCEPTS
• Information systems → Evaluation of retrieval results; Re-
trieval effectiveness.
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1 INTRODUCTION
Test collections are a mainstay of offline evaluation in IR [32]. Their
measurement accuracy became a focus of attention starting with
work by Zobel [43], which led to a series of papers that cumulatively
amassed evidence indicating test collection measurements were
reliable. Zobel created a topic splitting methodology to assess result
consistency, Zobel also examined the properties of a number of
statistical significance tests showing their value in measurement.
Topic splitting and significance became two key statistical pillars
used to substantiate the experiments of IR research.

Combining topic splitting with the popular t-test, Ferro and
Sanderson [13] reported “an unexpected number of inconsistent [mea-
surements]”: statistically significant results were occurring due to
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chance (i.e. Type I errors) far more than past work [33, 43] antici-
pated. Ferro and Sanderson stated the inconsistency could lead to
publication bias: where a paper is more likely to be accepted if it
reports a statistically significant improvement [9, 11]. The inconsis-
tency is important to understand, as Ferro and Sanderson claimed
that their topic splitting experiments were more representative of
actual IR experiments than those pioneered by Zobel. In this paper,
therefore, we address the following research questions:

• Is there a prevalence of Type I errors in IR experiments of the
type typically published in IR forums?

• How does the error vary across different types of IR experiments?
• If such variation occurs, how best can it be alleviated?

We find that there is a need to understand the context of a signifi-
cance test: was the test part of a family of multiple comparisons,
and what types of IR systems are being compared?

2 PAST WORK
We detail past work in topic splitting and the use of significance.

2.1 Topic splitting
Zobel [43] created a topic splitting methodology to assess test col-
lection result consistency. The methodology split the topics of the
TREC 5 ad hoc track collection into two equal sized sets. Zobel
pairwise compared, over both sets, the output of every system sub-
mitted to the track, i.e. the runs. Across the “approximately 4500”
pairs, Zobel noted, in one topic set, comparisons that resulted in
a significant improvement of one run 𝑢 over another 𝑣 (𝑢 ≻≻ 𝑣).
He then examined if 𝑢 ≤ 𝑣 in the other set, reporting that across
the 4,500 comparisons there were only 7 inconsistent pairs. Zobel
concluded that test collection experiments “lead to reliable results”.

Voorhees and Buckley [40] extended Zobel’s methodology by
randomly splitting topic sets fifty times across multiple test collec-
tions and discarding the 25% least effective runs “to prevent these
uninteresting runs from having an effect on our calculations”, an
approach widely adopted by others [12, 13, 33, 38].1 Voorhees and
Buckley also restricted pairwise comparisons to a particular type of
run, those submitted from a single participant. The authors stated
that “While runs submitted to TREC by the same [participant] are
not necessarily variants of a common system, very frequently they
are”. They reported the participant comparisons were more consis-
tent (having “lower error rates”) compared to runs across the whole
track. The paper is one of the few times that measurement accuracy
participant runs was tested.

1See also Boytsov et al. [6] for a notable variation on themethodology using a collection
with tens of thousands of topics.
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2.2 Significance
The steady adoption of significance in IR experiments is detailed
in past reviews [29, 32]. While many researchers use significance,
often the tests are conducted multiple times without correction.
This practice has been criticized as greatly increasing the probability
of Type I errors [16, 31]. There have been empirical examinations of
this mistake. Blanco and Zaragoza [4] examined simulated results
and Boytsov et al. [6] examined which might be the best correction
method. However, the relationship between correction methods
and the nature of IR experiments, such as topic set size or the types
of runs used has not been examined.

3 METHODOLOGY
We study how statistical significance tests behave when comparing
different types of runs. We consider the following set conditions:

• track: all the runs submitted to the track of an evaluation cam-
paign are considered. Typically 50–150 runs with approximately
1,200-11,000 pair-wise comparisons. This is the context organiz-
ers of a track use when summarizing the results of submissions
and is typically adopted by IR researchers when developing a
new evaluation measure, pooling strategy, studying a statistical
significance test, etc.

• participant: just the runs submitted by a participant to a track of
an evaluation campaign are considered. Around ten runs amount-
ing to (roughly) 50 pair-wise comparisons. This is the context
a typical IR researcher might find themselves trying to decide
which version of their system is better. As detailed in Sec 2 this
context is overlooked. Analyses conducted in the track condition
are assumed to hold also for the participant one.

In both conditions, comparing all possible pairs of runs risks in-
flating Type I error probability, i.e. the probability of rejecting the
null hypothesis and considering two runs as significantly differ-
ent when they are not. If 𝛼 represents the Type I error probability
when comparing one pair of runs, when performing𝑚 independent
pair-wise comparisons, the probability of committing at least one
Type I error in the𝑚 comparisons becomes 1 − (1 − 𝛼)𝑚 ; the so-
called Family-wise Error Rate (FWER) [17, 18].Multiple comparisons
require adjustment of a significance test so as to avoid inflating the
Type I error probability.

3.1 Statistical Significance Tests
The methodology we describe can be applied to any statistical
significance test, here, we focus on parametric tests: the Student’s
t test [35] and ANalysis Of VAriance (ANOVA) [15]. The former
allows comparison of two runs at a time and it is still the most
used statistical significance test by IR practitioners [29]; the latter
allows comparing a set of runs together. It can be considered as a
generalization of the Student’s t test to multiple runs.

Non parametric significance tests, such as the Wilcoxon test [42],
are also adopted by IR practitioners and some authors Parapar et al.
[23, 24]. The methodology proposed in this paper can be applied
to non parametric significance tests. We leave for future work a
derived formal analysis, which would require use of ranks instead
of marginal means as the one for parametric tests in this Section,
and to conduct experiments.

Let us consider a set of 𝑖 = 1, . . . ,𝑇 topics and 𝑗 = 1, . . . , 𝑅 runs.
Let 𝑦𝑖 𝑗 be the performance, according to some evaluation measure,
of run 𝑗 on topic 𝑖 . Since we aim at comparing all the possible pairs
of runs, we need to perform𝑚 =

(𝑅
2
)
=

𝑅 (𝑅−1)
2 comparisons.

3.1.1 Student’s t test. The test compares two runs 𝑢 and 𝑣 . We use
a paired t test, since each topic is applied to both runs.

Let 𝑑𝑖 = 𝑦𝑖𝑢 −𝑦𝑖𝑣 the difference between the performance of the
two runs 𝑢 and 𝑣 on topic 𝑖 and let 𝜇𝑑 and �̂�2

𝑑
be the sample mean

and the sample variance of the performance difference over the 𝑇
topics. The null hypothesis 𝐻0 is that the performance of the two
runs 𝑢 and 𝑣 is the same, i.e. the population mean is 𝜇𝑑 = 0. Under
the null hypothesis, the test statistic

𝑡𝑠𝑡𝑎𝑡 =
|𝜇𝑑 |√︁
�̂�2
𝑑/𝑇

> 𝑡
1−𝛼/2
𝑇−1 (1)

is distributed as a Student’s t distribution with 𝑇 − 1 degrees of
freedom and, for a two-tailed test – i.e. run 𝑢 is greater than run
𝑣 or vice-versa – its value has to be above the 100 ∗ (1 − 𝛼/2)-th
percentile of the Student’s t distribution in order to reject the null
hypothesis; note that we use 𝛼/2 since the Student’s t distribution
is symmetric with respect to the origin and we are conducting a
two-tailed test. The Student’s t distribution allows us to compute
the 𝑝-value 2 · P (𝑡𝑇−1 ≥ 𝑡𝑠𝑡𝑎𝑡 |𝐻0) (for a two-tailed test) and verify
that 𝑝 ≤ 𝛼 to decide whether to reject the null hypothesis or not.

The test in eq. (1) focuses on two runs in isolation. Consequently,
its value 𝑡𝑠𝑡𝑎𝑡 – or, equivalently, the 𝑝-value – will be the same in
both track and participant conditions.

In order to compare all possible pairs of runs, we need to perform
𝑚 separate t tests. To control for the FWER, we adopt Bonferroni’s
correction [5] which adjusts the significance level as follows:

𝛼 ′ =
𝛼

𝑚
(2)

The adjusted significance level 𝛼 ′ can be used to compute a different
threshold 𝑡1−

𝛼 ′/2
𝑇−1 in eq. (1) or, equivalently, to be compared against

the 𝑝-value of each t test.
The Bonferroni’s correction (2) does not consider information

about the two runs being compared or about the whole set of runs 𝑅,
it only relies on the fact that𝑚 comparisons have to be performed.
However, since the total number of comparisons𝑚 is different in the
track and in the participant conditions, the adjusted 𝛼 ′ significance
level will be different in the two conditions. In other terms, while
the test statistics in eq. (1) produce the same 𝑡𝑠𝑡𝑎𝑡 value in both
the track and participant conditions and, consequently, the same
𝑝-value, this 𝑡𝑠𝑡𝑎𝑡 value will be compared against two different
𝑡
1−𝛼 ′/2
𝑇−1 thresholds (𝛼 ′) in the track and participant conditions.
We label the paired t-test with Bonferroni’s correction ttpB.

Since it is erroneous but common in IR to conduct multiple t
tests without FWER adjustment, we also consider uncorrected
Non-Bonferroni tests, labelled ttpNB. In the ttpNB case, 𝑡𝑠𝑡𝑎𝑡 is
compared against the same (un-adjusted) threshold 𝑡1−

𝛼/2
𝑇−1 . In other

terms, the 𝑝-value from the test statistics is compared against the
same (un-adjusted) 𝛼 in both the track and the participant condi-
tions. Therefore, not performing the Bonferroni’s correction not
only inflates the Type I error rate but it also wrongly removes any
difference between the track and participant conditions.
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3.1.2 Two-way ANOVA. We use the following model [21, 28]

𝑦𝑖 𝑗 = 𝜇 · · + 𝛽𝑖 + 𝛾 𝑗 + 𝜀𝑖 𝑗 (3)

where 𝜇 · · is the grand mean, 𝛽𝑖 is the effect of the 𝑖-th topic,𝛾 𝑗 is the
effect of the 𝑗-th run, and 𝜀𝑖 𝑗 is the residual error committed by the
model in predicting 𝑦𝑖 𝑗 . Two-way ANOVA allows consideration
of all 𝑅 runs together; note that, when used for just two runs,
it is substantially equivalent to the paired Student’s t test. This
model was used for the first time by Tague-Sutcliffe and Blustein
[36] to analyze TREC 3 data, then by Banks et al. [2] to conduct a
more extensive analysis on TREC data and, eventually, studied and
extended by others [12–14, 27, 41].

The two-way ANOVA tests the so-called omnibus null hypothe-
sis that all the𝑅 runs perform the same; rejecting the null hypothesis
means that at least one run should perform differently from others.
As we are interested in all the𝑚 pair-wise comparisons across 𝑅, we
need to pair the two-way ANOVA with a follow-up Tukey Honestly
Significant Difference (HSD) test [37], which controls for the FWER.
The Tukey HSD test uses the following test statistic:

𝑡𝑠𝑡𝑎𝑡 =
|𝜇 ·𝑢 − 𝜇 ·𝑣 |√︁

MSError/𝑇
> 𝑞𝛼

𝑅,dfError (4)

where: 𝜇 ·𝑢 = 𝜇 · · + 𝛾𝑢 and 𝜇 ·𝑣 = 𝜇 · · + 𝛾𝑣 are the marginal means of
𝑢 and 𝑣 as estimated from the actual data; dfError are the Degrees
of Freedom (DF) of the error 𝜀𝑖 𝑗 ;MSError is the Mean Squares (MS)
of the error, i.e., an estimation of the variance left unexplained
by the ANOVA model; and 𝑞𝛼

𝑅,dfError
is the upper 100 ∗ (1 − 𝛼)-th

percentile of the studentized range distribution [22], from which
we compute the 𝑝-value P

(
𝑞𝑅,dfError ≥ 𝑡𝑠𝑡𝑎𝑡 |𝐻0

)
using 𝑝 ≤ 𝛼 to de-

cide null hypothesis rejection/acceptance. Note the 𝑝-value already
accounts for the adjustment for the multiple comparisons and can
be compared to the significance level 𝛼 without further correction.

Note that eq. (1) and eq. (4) both normalize the mean perfor-
mance difference between two runs by a quantity proportional to a
standard deviation and compare the difference against an appro-
priate threshold. Eq. (1) focuses on the two runs examined and
normalizes their mean performance difference by a quantity pro-
portional to their standard deviation, a quantity which changes
for each pair of runs. Eq. (4) contextualizes the difference with re-
spect to the whole set 𝑅 of considered runs. This is done because
the mean performance difference is normalized by the “standard
deviation” of the error of the two-way ANOVA model fitted on 𝑅,
which is the same for each pair of runs. When running multiple
t tests, the threshold 𝑡

1−𝛼/2
𝑇−1 is the same for each pair of runs but

independent from all of them, since it is a function of only on the
number of topics 𝑇 used and the significance level 𝛼 . On the other
hand, the studentized range distribution (the threshold 𝑞𝛼

𝑅,dfError
) is

parameterized by both the degrees of freedom of the error in the
ANOVA model and the total number of runs 𝑅 under comparison
(besides the significance level 𝛼). Therefore, it is same for all the
pairs of runs under examination but it takes into account the whole
set of runs rather than being independent from them.

While the mean performance difference between the runs 𝑢 and
𝑣 is the same in both the track and the participant conditions, both
the normalization factor and the studentized range distribution
are different in the track and in the participant conditions, thus
adapting both the test statistics and the threshold to each condition.

It is incorrect to conduct a Tukey HSD test only when ANOVA
rejects the omnibus null hypothesis (see Hsu [18, p. 177ff] and
Sakai [30, p. 73] for details). We always perform the Tukey HSD
test, regardless of the outcome of the omnibus null hypothesis.

We label two-way ANOVA with Tukey HSD as anv2.

3.2 Run Set-Wise Counts
3.2.1 Topic Splitting. To study statistical significance tests across a
set of runs, we adopt the topic splitting methodology used by Ferro
and Sanderson [13]. We sample without replacement from 𝑇 to
form two equal size topic sets – TS1 and TS2 – of varying sizes. We
compute the statistical significance tests under – ttpB, ttpNB, and
anv2 – on each TS and we consider the level of agreement on the
two topic sets TS1 and TS2 according to several measures. We use
the same TS splits for all the significance tests and conditions (track
or participant). This allows us to understand if the conclusions we
draw from one experiment, hold for another.

For each TS size, we repeat this whole process 𝑆 = 1, 000 times
by re-sampling the TS aggregating performance across the samples.

Note that eq. (1) can be re-written as 𝑡𝑠𝑡𝑎𝑡 =
𝜇𝑑√︃
�̂�2
𝑑

> 1√
𝑇
𝑡
1−𝛼/2
𝑇−1

and eq. (4) as 𝑡𝑠𝑡𝑎𝑡 =
|𝜇 ·𝑢−𝜇 ·𝑣 |√
MSError

> 1√
𝑇
𝑞𝛼
𝑅,dfError

. The threshold against
which the normalized performance difference between runs is com-
pared against is the same not only for each pair of runs under
comparison (as discussed in the previous section) but also for any
two topic sets TS1 and TS2 of the same size and for all the 𝑆 sam-
ples of topic sets. Therefore, the topic splitting methodology allows
us to set a reference (the threshold), which is common to all the
experiments, ensuring a fair level of comparability.

3.2.2 Consistency Counts. From Ferro and Sanderson [13], we con-
sider the following axes:
• Significance: what a statistical significance test detects on the two
TSs, broken down into: Active (A), both TSs say “significantly
different”; Passive (P), both TSs say “not significantly different”;
Mixed (M), one TS says “significantly different” but the other
set says “not significantly different”.

• Order : how runs are ordered on the two TSs; either Agreement
(A), both TSs say that one run is better than another (𝑢 ≻ 𝑣), or
viceversa; Disagreement (D), one TSs says 𝑢 ≻ 𝑣 but the other
set says 𝑢 ≺ 𝑣 , or viceversa.
From this, we can sub-divide what happens to each pair of runs

(𝑢, 𝑣) on two TSs as follows:
• Active Agreement (AA): on both TS1 and TS2, either 𝑢 ≻≻ 𝑣

or 𝑣 ≻≻ 𝑢. The best kind of consistency.
• Active Disagreements (AD): 𝑢 ≻≻ 𝑣 on TS1 but 𝑣 ≻≻ 𝑢 on
TS2; or 𝑣 ≻≻ 𝑢 on TS1 but 𝑢 ≻≻ 𝑣 on TS2. The worst kind of
inconsistency, we reach opposite conclusions on the two TSs.

• Mixed Agreement (MA): 𝑢 ≻≻ 𝑣 on TS1 but 𝑢 ≻ 𝑣 on TS2; or
𝑣 ≻≻ 𝑢 on TS1 but 𝑣 ≻ 𝑢 on TS2; 𝑢 ≻ 𝑣 on TS1 but 𝑣 ≻≻ 𝑣 on
TS2; or 𝑣 ≻ 𝑢 on TS1 but 𝑣 ≻≻ 𝑢 on TS2. A situation where a
test is not able to confirm its conclusions on both TSs. With the
order of the two runs the same, however, it could indicate a lack
of power in the significance test.

• Mixed Disagreement (MD): 𝑢 ≻≻ 𝑣 on TS1 but 𝑣 ≻ 𝑢 on TS2;
or 𝑣 ≻≻ 𝑢 on TS1 but 𝑢 ≻ 𝑣 on TS2; or 𝑢 ≻ 𝑣 on TS1 but 𝑣 ≻≻ 𝑢
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on TS2; or 𝑣 ≻ 𝑢 on TS1 but 𝑢 ≻≻ 𝑣 on TS2. This indicates a
situation where a test is not able to confirm its conclusions on
both TSs and the order of the two runs is the opposite. More
severe issue than MA but less than AD.

• Passive Agreement (PA): on both TS1 and TS2, 𝑢 ≻ 𝑣 or 𝑣 ≻ 𝑢.
A less important count given the lack of significance in either TS,
but if it is too big, it could be also a symptom of lack of power.

• Passive Disagreement (PD): 𝑢 ≻ 𝑣 on TS1 but 𝑣 ≻ 𝑢 on TS2;
or 𝑣 ≻ 𝑢 on TS1 but 𝑢 ≻ 𝑣 on TS2. Disagreement that is a less
severe than MD given nothing is significantly different.

The six counts summed over all the possible pairs of runs is equal
to the total number of pairs under comparison∑︁
(𝑢,𝑣)

(𝐴𝐴 +𝐴𝐷 +𝑀𝐴 +𝑀𝐷 + 𝑃𝐴 + 𝑃𝐷) =𝑚 =
𝑅(𝑅 − 1)

2
(5)

thus providing a complete account of what happens when compar-
ing a whole set of runs. Note that similar counts in previous work
on topic splitting [33, 38, 40, 43] do not hold this property and they
do not sum up to the total number of run pairs under comparison.

3.2.3 Bias and Disagreement Rate. Ferro and Sanderson [13] also
measure Bias: the likelihood of obtaining a significant result when
a test on a different TS would have produced either no significance
(MA, MD) or a significant result in the opposite direction (AD):

𝐵𝑖𝑎𝑠 = 1 − 𝐴𝐴

𝐴𝐴 +𝐴𝐷 + 𝑀𝐴
2 + 𝑀𝐷

2
(6)

The count of MA and MD is halved as in only one of the two TSs
in those counts significance was observed. One minus the fraction
is computed to focus on errors, the lower, the better.

We also consider the Disagreement Rate:

𝐷𝑅 =
𝐴𝐷 +𝑀𝐷 + 𝑃𝐷

𝐴𝐴 +𝐴𝐷 +𝑀𝐴 +𝑀𝐷 + 𝑃𝐴 + 𝑃𝐷
=
𝐴𝐷 +𝑀𝐷 + 𝑃𝐷

𝑚
(7)

which quantifies how much runs are in the opposite order in the
two TSs and, thus, the lower, the better. It corresponds to the error
or swap rate detailed in past work [33, 40].

Note that while Bias summarizes and accounts for the joint
viewpoint of a significance test (significance axis) and how actual
data layout runs (order axis), the Disagreement Rate accounts only
for how actual data layout runs (order axis) and it is independent
from the statistical significance test at hand.

3.3 Run Pair-Wise Probabilities
While Ferro and Sanderson focused on analyzing sets of runs as a
whole, we extend their methodology to provide more insights on
each pair of runs (𝑢, 𝑣) under comparison.

Each run pair (𝑢, 𝑣) can result in one outcome: AA, AD, MA,
MD, PA, PD. We can model the AA case as a binomial random
variable 𝑋𝐴𝐴 ∼ 𝐵(1, 𝑝𝐴𝐴) with parameters 1 and 𝑝𝐴𝐴 , where 𝑝𝐴𝐴
is the probability that the pair (𝑢, 𝑣) is an AA. We can proceed
with similar binomial random variables 𝑋𝐴𝐷 , 𝑋𝑀𝐴 , 𝑋𝑀𝐷 , 𝑋𝑃𝐴 , and
𝑋𝑃𝐷 and their corresponding probabilities for the other cases. To
estimate 𝑝𝐴𝐴 (and the other cases), we rely on E[𝑋𝐴𝐴] = 𝑝𝐴𝐴 , i.e.
the expectation of a binomial random variable 𝐵(1, 𝑝𝐴𝐴) is 𝑝𝐴𝐴 . As
explained above, the topic splitting process is repeated 𝑆 times, we

can estimate the sample mean and thus 𝑝𝐴𝐴 as follows:

𝑝𝐴𝐴 =

∑𝑆
𝑖=1 𝜒𝐴𝐴 (𝑖)

𝑆
(8)

where 𝜒𝐴𝐴 is the indicator function denoting whether the run pair
(𝑢, 𝑣) is an AA in the 𝑖-th trial of the topic splitting process.

Note that, since AA, AD, MA, MD, PA, PD are disjoint outcomes
covering the whole sample space Ω, it holds:

𝑝𝐴𝐴 + 𝑝𝐴𝐷 + 𝑝𝑀𝐴 + 𝑝𝑀𝐷 + 𝑝𝑃𝐴 + 𝑝𝑃𝐷 = 1 (9)

Thus, we can provide each pair of runs (𝑢, 𝑣) with a fine-grained
analytics on its probability to turn out to be an AA, AD, etc. Thus
we can provide an estimate of the “reliability” of the run pair (𝑢, 𝑣),
helping researchers and practitioners in taking decisions about that
pair. For example, suppose 𝑢 is a new version of our IR system
and 𝑣 is the version currently in operation, if for the pair (𝑢, 𝑣) the
𝑝𝐴𝐴 was high enough and 𝑢 ≻≻ 𝑣 , one might decide to put 𝑢 in
production instead of 𝑣 . However, if 𝑝𝐴𝐷 was not low enough (or
just above zero), we could take the opposite decision and keep 𝑣 in
production, since the results are not stable enough yet.

We can also exploit these probabilities and the fact that they
are disjoint events to estimate the probability that a run pair (𝑢, 𝑣)
would contribute to the bias

𝑝𝐵𝑖𝑎𝑠 = 𝑝𝐴𝐷 + 𝑝𝑀𝐴 + 𝑝𝑀𝐷 (10)

or to the disagreement rate

𝑝𝐷𝑅 = 𝑝𝐴𝐷 + 𝑝𝑀𝐷 + 𝑝𝑃𝐷 (11)

3.4 Topic Splitting With/Without Replacement
Sanderson and Zobel [33] observed that, as the TS size approaches
𝑇
2 , the splits become less independent since sampling is without
replacement. Indeed, when 𝑡𝑠1 = 𝑡𝑠2 = 𝑇

2 , once the topics in TS1
are sampled, the topics in TS2 are already chosen. Sanderson and
Zobel concluded that this dependency might artificially inflate what
we called Disagreement Rate in eq. (7) with respect to the case of
sampling with replacement.

3.4.1 SRSWOR vs SRSWR. Simple Random Sampling without Re-
placement (SRSWOR) randomly samples 𝑥1, 𝑥2, . . . , 𝑥𝑘 distinct items
from a finite population of 𝑁 elements. Differently from Simple
Random Sampling with Replacement (SRSWR) where the same item
may appear more than once in the sample and items are indepen-
dent from each other, in SRSWOR, items in the sample are not
independent from each other. As a consequence, the covariance
between two items 𝑥𝑖 and 𝑥 𝑗 , 𝑖 ≠ 𝑗 , is not zero but it is proportional
to the population variance 𝜎2, namely Cov(𝑥𝑖 , 𝑥 𝑗 ) = − 𝜎2

𝑁−1 [10, 26].
It should be noted as this covariance is a fixed factor that depends
only on the population size 𝑁 and not on the sample size 𝑘 .

The sample mean 𝑋 = 1
𝑘

∑𝑘
𝑖=1 𝑥𝑖 is an unbiased estimator of the

population mean for both SRSWOR and SRSWR. The variance of
the sample mean in SRSWOR is Var(𝑋 ) = 𝜎2

𝑘
𝑁−𝑘
𝑁−1 , where

𝜎2

𝑘
is the

same as the variance of the sample mean in SRSWR and 𝑁−𝑘
𝑁−1 is

the Finite Population Correction (FPC) factor. In other words, the
variance of the sample mean in the SRSWOR case is the variance
of the sample mean in the SRSWR case adjusted by the FPC factor.
When the population size 𝑁 is large or the sample size 𝑘 is small
compared to 𝑁 , 𝐹𝑃𝐶 → 1 and the variance of the sample mean
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is (almost) identical to the case of SRSWR. When the sample size
𝑘 increases with respect to 𝑁 , 𝐹𝑃𝐶 < 1, the variance of the sam-
ple mean is reduced, making the sample mean more accurate and
smaller confidence intervals could be considered around it [26]. If
one does not consider the FPC and instead just use the variance of
the sample mean as in the SRSWR case, the actual variance of the
sample mean may be overestimated. For this reason, SRSWOR is
said to be more efficient than SRSWR.

The sample variance 𝑠2 = 1
𝑘−1

∑𝑘
𝑖=1 (𝑥𝑖 −𝑋 )2 is an unbiased esti-

mator of the population variance in the case of SRSWR while in the
SRSWOR case is no more an unbiased estimator of the population
variance and it needs to be adjusted by the 𝑁−1

𝑁
factor. The SRSWR

sample variance tends to slightly overestimate the population vari-
ance in the SRSWOR case; as soon as the population size increases
𝑁−1
𝑁

→ 1 and it becomes (almost) identical to the SRSWR case.
The adjustment 𝑁−1

𝑁
to the sample variance depends only on the

population size 𝑁 and not on the sample size 𝑘 .

3.4.2 SRSWOR vs SRSWR for Topic Splitting. The bigger efficiency
of SRSWOR with respect to SRSWR would give us the possibility of
creating smaller confidence intervals aroundmean run performance
and being more accurate in comparing two runs thus, possibly,
obtaining more significantly different run pairs.

However, our set of topics 𝑇 is just a frame of an “idealized”
larger population of topics. In such cases, if one is interested in the
“idealized” population rather than the frame, as suggested by Siegel
[34], it is preferable to not apply the FPC factor and to proceed with
the estimates as in the case of sampling with replacement. Moreover,
we are using two topic sets TSs, calculating significance. The size
of the TSs is the same and, therefore, the FPC factor or other biases,
such as the adjustment in the sample variance estimation2, would
be the same for both sets. Since we are interested in a comparison
across TSs rather than in absolute numbers, applying the same
scaling on both sides would be less relevant.

Therefore, we use topic splitting based on SRSWOR, since it bet-
ter represents the case of a set of topics used in an experiment and
a different set of topics used in another experiment or in operation,
or the case of two samples from a large query log of a search engine
which are unlikely to overlap, or the case of topics changing over
time, e.g. when you sample from a query log to run experiments
and, meanwhile, users change their interests and start submitting
other topics. In other terms, topic splitting based on SRSWOR allow
us to better study the generalizabilty of the drawn inferences.

Sanderson and Zobel highlighted possible inflation of 𝐷𝑅 as the
topic set size approaches 𝑇

2 , we note that the covariance between
items in the sample is fixed, just depending on the population size
𝑇 and not on the sample size 𝑡𝑠1 = 𝑡𝑠2. As a consequence, a topic
set size of 𝑇2 does not cause more dependence in the items of the
sample than any other size. Therefore, if SRSWOR should have any
impact on the 𝐷𝑅 with respect to SRSWR, this should be more or
less the same for all the topic set sizes. Moreover, the covariance
Cov(𝑥𝑖 , 𝑥 𝑗 ) = − 𝜎2

𝑇−1 , 𝑖 ≠ 𝑗 is inversely proportional to the total
number of topics 𝑇 which we are using, which usually is in the
order of tens or hundreds, and this makes it a small factor, further
reducing the difference between SRSWOR and SRSWR.

2which depends on𝑇 and not on the topic set size

4 EXPERIMENTAL SETUP
Collections. We used the following collections: TREC 13 (T13) ro-
bust track [39], which contains 249 topics, 110 runs; TREC 26 (T26)
Common Core track [1], which contains 50 topics, 75 runs; TREC
27 (T27) Common Core track, which contains 50 topics, 72 runs.

We used Average Precision [7], Precision at 10, and Normalized
Discounted Cumulated Gain (nDCG) [19]. For binary measures, the
multi-graded judgements were mapped to binary: everything above
not relevant was considered relevant. Finding little difference be-
tween the three measures, we report nDCG only.

Topic Sets. We sampled topics forming two TSs. For T13, we formed
splits of 2%, 4%, 10%, 20%, and 50%, containing, respectively, 5, 10,
25, 50, and 125 topics each3. For T26 and T27, we formed splits of
10%, 20%, and 50% containing, respectively, 5, 10, and 25 topics each.
For each split, we repeated the topic sampling 𝑆 = 1, 000 times. For
the run set-wise count of Section 3.2, we took the arithmetic mean,
resulting in counts having non-integer values.

We performed the sampling both without replacement (WOR),
the main experiments in the paper, and with replacement (WR) to
compare the two alternatives as discussed in Section 3.4. When it
is not explicitly mentioned, we are reporting WOR results.

Significance Level and Multiple Comparison. We set the significance
level 𝛼 = 0.05. In order to control for the increased Type-I errors due
to the multiple comparisons between all possible pairs, we adopt
the Tukey HSD correction [17, 37] for the anv2 ANOVA model and
Bonferroni’s correction [5] for the ttpB paired Student’s t test. We
also run a Student’s t test with No Bonferroni correction (ttpNB),
to investigate the impact of this practice in our field.

Reproducibility. Code at: https://bitbucket.org/frrncl/sigir2024-fs/.

5 ANALYSIS
5.1 Multiple Testing Correction
We start by comparing significance tests with and without multiple
corrections. As detailed in Sec 3.1 the application of correction
methods, such as Bonferroni or Tukey HSD, reduces the number of
Type I errors by raising the p-value threshold. Consequently, for
this analysis, we count the number of significant pairs across the
two topic sets, TS1 and TS2.

We first measure on the largest possible split of topic sets in the
three collections, T13, T26, and T27 measuring on both conditions:
track and participant. For the participant condition, we aggregate
the pairs of the 13 participant groups in T13, 14 groups in T26, and
11 groups in T27. We can see in Table 1 the number of significant
pairs from ttpNB is substantially higher than anv2 and ttpB in both
the track and participant conditions. We see in the TS1% and TS2%
columns that the multiple comparison correction of anv2 and ttpB
leads to fewer significant pairs: 39% – 60% of the number of pairs
found in TTPNB. Examining the track and participant conditions,
the fraction of significant pairs resulting from multiple testing
correction is broadly similar.

The larger number of topics in the T13 collection allows an
examination of the impact of multiple testing correction across
topic set size splits, see Table 2. For smaller topic set sizes (5, 10, 20),
3As there are 249 topics in T13, the 50%-50% split is actually 125-124.
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the impact of multiple testing in reducing the number of significant
pairs is greater for the track condition compared to the participant
condition. As the topic set sizes grow (100, 125), the difference
between the two conditions reduces and becomes broadly similar
for the larger topic set sizes. We also find that there is a notable
difference between the correction from Bonferroni compared to
Tukey HSD. For the small topic sizes (5, 10) there are virtually no
significant results after the Bonferroni correction. However, for the
Tukey HSD test, while the number of significant tests is reduced
substantially, there is still a notable number found to be significant.

The application of multiple testing correction is a proven method
for removing false positives from experimental results. Focusing
on topic set sizes that might be used in offline testing (25 topics
or more), the reduction in number of significance tests resulting
from the multiple testing correction ranges from a low 32% to
a high of 67%. The implication from this pair of measurements
is that uncorrected significance tests, common in a great many
publications, are routinely reporting false positive results.

5.2 Track vs Participant Conditions
Using topic splitting, we examine if a significant result found in one
split is repeated in another. Bias, eq. (6), measures the fraction of
significant differences in an experiment that run the risk of being
incorrect. We contrast bias measured in the two conditions: track
and participant. As we see on the left of Figure 1 the bias in the
participant only runs is substantially higher than for track runs.

Examining 𝑝𝐵𝑖𝑎𝑠 (graphs on the right of Figure 1), we observe
that the probability of a pair contributing to bias is higher in the
participant condition than in the track, reinforcing previous obser-
vations about the systematic difference between the conditions.

The decrease in 𝑏𝑖𝑎𝑠 as the topic set size increases is expected:
more topics should mean more stable measurement. The somewhat
increasing trend of 𝑝𝐵𝑖𝑎𝑠 might look surprising. However, as shown
in Table 2, smaller topic set sizes lead to a much smaller overall
number of significantly different pairs; therefore, each pair has less
probability to be significantly different and, in turn, less probability
to be an AA, MA or MD. Therefore, while increasing the number
of topics is beneficial to get better estimates and lower the overall
amount of bias (Figure 1 on the left), at the same time, it also
slightly increases the probability of a pair to contribute to the
smaller amount of bias left (Figure 1 on the right).

Obtaining significance increases the likelihood of a paper being
published [11]. We contend that the participant condition is a more
realistic simulation of the situation researchers find themselves
when conducting and potentially publishing research. They will be
testing the difference between retrieval systems that are producing
similar scores with only minor differences between those scores.
If significance is obtained, then the likelihood of publication is
increased however, if as shown in the bias measures on the left, a
large fraction of those significance measures are only inconsistently
measured across different topic sets, then there is a substantial risk
that the significance result is a false positive.

5.3 Fine-grained Run-Pairwise Analysis
Figure 2 shows an example of how to use the run pair-wise probabil-
ities discussed in Section 3.3 to conduct a finer-grained analysis for

participant RMIT [3] in track T27 using nDCG, according to different
significance tests – anv2, ttpB, and ttpNB, one for each subfigure.
We examine the five submitted runs of RMIT for T27 resulting in
ten runs pairs to be compared. One can use this analysis as a tool
to mitigate the inconsistencies discussed in the previous sections
and to support researchers in taking more principled decisions.

The y-axis reports each pair of runs for a participant; next to
the label, in parentheses, we report the mean nDCG for that run
using all the topics of T27; the pair is in bold when it is significantly
different according to the significance test conducted using all the
topics of T27; labels are ordered from the best performing run at
the bottom of the figure to the worst performing at the top. In short,
the y-axis labels summarize the usual setup, i.e. what a participant
sees about their runs when using all the data of a track.

For each pair of runs the figure shows a horizontal stacked bar
chart where each segment corresponds to one of the probabilities
𝑝𝐴𝐴 (in green), 𝑝𝑃𝐴 (in light gray), 𝑝𝑃𝐷 (in dark gray), 𝑝𝑀𝐴 (in
yellow), 𝑝𝑀𝐷 (in orange), and 𝑝𝐴𝐷 (in red), ordered left-to-right by
their desirability/severity. Since the probabilities sum up to 1, the
x-axis goes from 0 to 1. Finally, a violet diamond indicates 𝑝𝐵𝑖𝑎𝑠
while a red circle indicates 𝑝𝐷𝑅 . The probabilities are estimated
using the 50%-50% topic split (25 topics in each), sampling without
replacement, and repeating the sampling 𝑆 times.

We present some (though not all) of the examinations possi-
ble with Figure 2. According to anv2 in Figure 2a, the top run
(RMITUQVDBFNZDM1, nDCG = 0.7190) is not significantly differ-
ent from the second-top run (RMITUQVDBFDM3, nDCG = 0.7143)
while both of them are significantly different from the third-top run
(RMITFDA4, nDCG = 0.6525). However, the pair (RMITUQVDBFNZDM1,
RMITFDA4) has a probability of mixed agreement 𝑝𝑀𝐴 = 0.76which
leads to a probability of originating bias 𝑝𝐵𝑖𝑎𝑠 = 0.76 while the
pair (RMITUQVDBFDM3, RMITFDA4) has a lower probability of mixed
agreement 𝑝𝑀𝐴 = 0.46 which leads to a much smaller probabil-
ity of originating bias 𝑝𝐵𝑖𝑎𝑠 = 0.46. Therefore, if RMITFDA4 was
the IR system currently in production and RMITUQVDBFNZDM1 and
RMITUQVDBFDM3were two alternative improved versions, it could be
preferable to go for RMITUQVDBFDM3 instead of RMITUQVDBFNZDM1
since they are both significantly better than RMITFDA4 and not sig-
nificantly better than each other but RMITUQVDBFDM3 promises to
deliver more consistent and predictable improvements.

Suppose that the run (RMITUQVBestDM2, nDCG = 0.6410) is the
system in production. The pair (RMITUQVDBFNZDM1, RMITUQVBestDM2)
has a probability of active agreement 𝑝𝐴𝐴 = 0.38 and of mixed
agreement 𝑝𝑀𝐴 = 0.62 which leads to a probability of originating
bias 𝑝𝐵𝑖𝑎𝑠 = 0.62; on the other hand, the pair (RMITUQVDBFDM3,
RMITUQVBestDM2) has a probability of active agreement 𝑝𝐴𝐴 ∼=
0.08 and of mixed agreement 𝑝𝑀𝐴 = 0.92 which leads to a probabil-
ity of originating bias 𝑝𝐵𝑖𝑎𝑠 = 0.92. Therefore, it would be preferable
to put in production RMITUQVDBFNZDM1 instead of RMITUQVDBFDM3
thanks to the lower probability of bias and high probability of ac-
tive agreements, which give grounds for expecting consistent and
predictable improvements.

We reach similar conclusions for ttpB in Figure 2b, even if the
Student’s t test with Bonferroni’s correction tends to be more “op-
timistic” in detecting significance compared to anv2. For example,
for the pair (RMITUQVDBFNZDM1, RMITFDA4), there is a probability of
active agreement 𝑝𝐴𝐴 = 0.03 (while with anv2 it was 𝑝𝐴𝐴 = 0.00)
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Table 1: Comparing with and without multiple comparisons across collections

Pairs Sig. Pairs Pairs Sig. Pairs
Collection Model (track) TS1 avg. TS2 avg. TS1% TS2% (participant) TS1 avg. TS2 avg. TS1% TS2%
T13 (125, 124) TTPNB 5995 4721.2 4714.5 435 264.3 263.5

ANV2 3134.3 3118.5 66% 66% 166.6 165.5 63% 63%
TTPB 3158.7 3144.6 67% 67% 178.1 176.8 67% 67%

T26 (25, 25) TTPNB 2775 1926.5 1917.6 254 122.5 122.7
ANV2 1120.7 1106.4 58% 58% 58.0 57.8 47% 47%
TTPB 781.9 776.3 41% 40% 48.0 48.2 39% 39%

T27 (25, 25) TTPNB 2556 1679.5 1688.3 249 86.6 87.5
ANV2 995.1 999.1 59% 59% 54.2 54.7 63% 63%
TTPB 804.7 806.5 48% 48% 41.8 41.8 48% 48%

Table 2: Comparing with and without multiple comparisons across different topic set sizes

T13 Topic Set Significant Pairs (track, 5995) Significant Pairs (participant, 435)
(TS1, TS2) size Model TS1 avg. TS2 avg. TS1% TS2% TS1 avg. TS2 avg. TS1% TS2%
wor_02_02 (05, 05) TTPNB 1254.3 1245.3 31.2 30.4

ANV2 327.1 330.1 26% 27% 19.7 19.6 63% 65%
TTPB 0.5 0.5 0% 0% 0.9 0.9 3% 3%

wor_04_04 (10, 10) TTPNB 2223.1 2246.8 71.9 73.0
ANV2 701.4 716.0 32% 32% 35.1 35.8 49% 49%
TTPB 23.8 25.7 1% 1% 6.0 6.5 8% 9%

wor_10_10 (25, 25) TTPNB 3361.4 3360.4 142.9 142.7
ANV2 1431.6 1429.8 43% 43% 72.2 71.5 51% 50%
TTPB 888.5 883.5 26% 26% 44.9 44.1 31% 31%

wor_20_20 (50, 50) TTPNB 4041.5 4036.2 197.8 198.5
ANV2 2103.6 2097.6 52% 52% 108.8 108.5 55% 55%
TTPB 1868.6 1862.9 46% 46% 99.4 99.3 50% 50%

wor_30_30 (75, 75) TTPNB 4373.3 4365.7 229.1 228.3
ANV2 2557.8 2546.2 58% 58% 133.8 133.4 58% 58%
TTPB 2458.9 2445.8 56% 56% 132.7 132.2 58% 58%

wor_40_40 (100, 100) TTPNB 4577.4 4577.3 249.6 249.8
ANV2 2881.1 2886.0 63% 63% 152.0 152.0 61% 61%
TTPB 2860.7 2862.0 62% 63% 157.4 157.3 63% 63%

wor_50_50 (125, 124) TTPNB 4721.2 4714.5 264.3 263.5
ANV2 3134.3 3118.5 66% 66% 166.6 165.5 63% 63%
TTPB 3158.7 3144.6 67% 67% 178.1 176.8 67% 67%
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Figure 1: Track vs Participant condition on T13 for nDCG using anv2 (top) and ttpB (bottom).
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(c) Participant RMIT in track T27 using ttpNB.

Figure 2: Pair-wise probability analysis of significance tests for participant RMIT in T27 using nDCG.

and the probability of mixed agreement goes to 𝑝𝑀𝐴 = 0.89 (while
with anv2 it was 𝑝𝑀𝐴 = 0.76) originating a probability of bias
𝑝𝐵𝑖𝑎𝑠 = 0.89 (while with anv2 it was 𝑝𝐵𝑖𝑎𝑠 = 0.76). Besides the
difference in the normalization factor for the mean performance
differences, the main reason of the difference between anv2 and

ttpB lays in their thresholds: 1√
25
𝑡
1− 0.05/10

2
24 = 0.6181 is more liberal

than 1√
25
𝑞0.055,96 = 0.7864.

Finally, Figure 2c shows multiple testing without any correction.
Ignoring FWER causes the probability of active agreements 𝑝𝐴𝐴 to
grow for almost all the pairs of runs, incorporating previouslymixed
agreements. Moreover, the rise in significant differences causes an
increase in the probability of mixed and active disagreements, as
in the case of the pair (RMITFDA4, RMITUQVBestDM2) which now
has 𝑝𝐴𝐷 = 0.001. Therefore, even if we generally consider higher
𝑝𝐴𝐴 and lower 𝑝𝑀𝐴 better, if in our plot we observe very high
and predominant green bars (high 𝑝𝐴𝐴) at a price of a substantial
decrease in the yellow bars (low 𝑝𝑀𝐴), possibly accompanied by the
appearance of some orange bars (increase in 𝑝𝑀𝐷 ) or even red ones
(increase in 𝑝𝐴𝐷 ), we should take this as an indicator of possible
serious issues in our experimental setup, as for example a lack of
adjustment for multiple comparisons.

5.4 Topic Splitting With/Without Replacement
Investigating replacement, see Section 3.4, Tables 3 and 4 report 𝐷𝑅
and𝐵𝑖𝑎𝑠 for different topics set sizes for nDCGwhen splitting topics
using sampling without replacement (WOR) and with replacement
(WR). As 𝐷𝑅 is independent from the statistical significance test
at hand, the tables do not indicate a significance test for it. 𝐵𝑖𝑎𝑠
depends on the significance test and, for space reasons, we report
it only for anv2.

Differently from what was highlighted by Sanderson and Zobel
[33], we observe the same behaviour and almost the same𝐷𝑅 values
for both WR and WOR, in both the track and participant conditions.
Moreover, when the topic set size is 𝑇

2 , i.e. 125 T13 and 25 T26 and
T27, we do not observe any inflation of the 𝐷𝑅 for the sampling

without replacement case. We reach the same conclusions for 𝐵𝑖𝑎𝑠 .
Therefore, we conclude that the sampling without replacement is
not introducing specific deviations and that we can adopt it for the
reasons discussed in Section 3.4.

Tables 3 and 4 provide further evidence about the difference be-
tween the track and participant conditions, discussed in Section 5.2,
showing how 𝐵𝑖𝑎𝑠 , but often also 𝐷𝑅, can be substantially worse
for the participant condition than for track. They provide a more
fine-grained view than Figure 1, since they report an example for
a given participant, together with confidence intervals around it,
instead of just an aggregation across all the participants’ groups;
they also show how this difference holds for both WR and WOR.

6 DISCUSSION
We reflect on the results we obtained from our experiments.

6.1 Correcting Multiple Testing
The results from Section 5.1 showed that 40% − 50% of uncorrected
significance tests in an offline evaluation setting are likely Type
I errors. As a community, we need to adopt multiple testing cor-
rection for publications. Past work [4, 6] empirically showed the
importance of multiple test corrections to limit the potential of
Type I errors occurring but that work did not quantify errors in the
manner detailed here. Later others [16, 31] outlined the statistical
argument for using that form of correction, but did not estimate
how many Type I errors might occur. Our experiments add to the
body of knowledge by showing the magnitude of those errors when
testing on a set of pair-wise comparisons across a series of runs: a
typical IR experiment.

Our results engage with statements made by Carterette [8] who
stated that the correction in p-value for participant runs (Option
2a in his paper) would be the smallest that one would see across
different multiple testing scenarios. One might imagine that this
smaller correction might lead to a smaller reduction in the number
of significance tests found in our experiments, however no such
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Table 3: 𝐷𝑅 and 𝐵𝑖𝑎𝑠 for nDCG using topic split sampling with (WR) or without (WOR) replacement for on T13.

Condition Measure 5 Topics 10 Topics 25 Topics 50 Topics 75 Topics 100 Topics 125 Topics
T13 𝐷𝑅 WOR 0.2510 ± 0.0033 0.1986 ± 0.0026 0.1329 ± 0.0017 0.0965 ± 0.0013 0.0791 ± 0.0010 0.0684 ± 0.0009 0.0608 ± 0.0007

WR 0.2511 ± 0.0034 0.1929 ± 0.0027 0.1293 ± 0.0017 0.0951 ± 0.0013 0.0774 ± 0.0010 0.0677 ± 0.0009 0.0610 ± 0.0008
FUB@T13 𝐷𝑅 WOR 0.3912 ± 0.0101 0.3347 ± 0.0092 0.2176 ± 0.0065 0.1500 ± 0.0047 0.1212 ± 0.0036 0.1070 ± 0.0033 0.0914 ± 0.0026

WR 0.3799 ± 0.0104 0.3243 ± 0.0090 0.2132 ± 0.0066 0.1459 ± 0.0047 0.1190 ± 0.0039 0.1026 ± 0.0034 0.0933 ± 0.0032

T13, anv2 𝐵𝑖𝑎𝑠 WOR 0.6821 ± 0.0116 0.3796 ± 0.0082 0.1834 ± 0.0028 0.1423 ± 0.0018 0.1217 ± 0.0015 0.1026 ± 0.0013 0.0871 ± 0.0011
WR 0.6786 ± 0.0116 0.3733 ± 0.0083 0.1809 ± 0.0030 0.1412 ± 0.0018 0.1181 ± 0.0015 0.1010 ± 0.0014 0.0883 ± 0.0012

FUB@T13, anv2 𝐵𝑖𝑎𝑠 WOR 0.9835 ± 0.0122 0.9835 ± 0.0089 0.9294 ± 0.0120 0.7075 ± 0.0165 0.4794 ± 0.0129 0.3406 ± 0.0093 0.2241 ± 0.0073
WR 0.9942 ± 0.0066 0.9884 ± 0.0071 0.8969 ± 0.0145 0.6578 ± 0.0172 0.4550 ± 0.0143 0.3356 ± 0.0109 0.2547 ± 0.0081

Table 4: Same measures as Table 3 based on T26 and T27.

Condition Measure 5 Topics 10 Topics 25 Topics
T26 𝐷𝑅 WOR 0.1875 ± 0.0033 0.1373 ± 0.0020 0.0989 ± 0.0013

WR 0.1795 ± 0.0034 0.1343 ± 0.0024 0.0892 ± 0.0014
SABIR@T26 𝐷𝑅 WOR 0.2884 ± 0.0070 0.2201 ± 0.0058 0.1299 ± 0.0039

WR 0.2791 ± 0.0072 0.2113 ± 0.0057 0.1370 ± 0.0042
T27 𝐷𝑅 WOR 0.2002 ± 0.0030 0.1557 ± 0.0021 0.1224 ± 0.0013

WR 0.1908 ± 0.0032 0.1505 ± 0.0023 0.1049 ± 0.0016
RMIT@T27 𝐷𝑅 WOR 0.1739 ± 0.0074 0.1208 ± 0.0053 0.1002 ± 0.0046

WR 0.1718 ± 0.0078 0.1177 ± 0.0054 0.0913 ± 0.0044

T26, anv2 𝐵𝑖𝑎𝑠 WOR 0.4073 ± 0.0089 0.2513 ± 0.0057 0.1885 ± 0.0033
WR 0.3986 ± 0.0096 0.2540 ± 0.0059 0.1656 ± 0.0035

SABIR@T26, anv2 𝐵𝑖𝑎𝑠 WOR 0.9783 ± 0.0079 0.9054 ± 0.0129 0.3092 ± 0.0089
WR 0.9467 ± 0.0136 0.8321 ± 0.0166 0.3164 ± 0.0095

T27, anv2 𝐵𝑖𝑎𝑠 WOR 0.2243 ± 0.0083 0.1495 ± 0.0027 0.0954 ± 0.0017
WR 0.2279 ± 0.0087 0.1484 ± 0.0030 0.0964 ± 0.0020

RMIT@T27, anv2 𝐵𝑖𝑎𝑠 WOR 0.9244 ± 0.0196 0.5383 ± 0.0249 0.4385 ± 0.0074
WR 0.8738 ± 0.0229 0.5578 ± 0.0240 0.3048 ± 0.0104

difference between track and participant runs was observed. The
TS1% and TS2% values are similar between track and participant in
Tables 1 & 2. We view this lack of difference between the participant
and track conditions to be an indication of the correction methods
working appropriately. If one is conducting experiments with a
large number of comparisons, as occurs in a track, the level of
correction needs to be greater in order to avoid Type I errors. Note,
we see that the differences between track and participant varies
depending on the topic set size. Carterette [8] did not examine such
an aspect of the problem.

6.2 Track vs Participant Conditions
The results in Section 5.2 contradict research results shown in past
work. In Voorhees and Buckley [40] it was suggested that partic-
ipant only runs would result in less error when comparing runs
across different topics splits. We find the opposite of this: error in
the participant condition is higher than the track condition. Reex-
amining Voorhees and Buckley’s experiments, we wonder if this
contradiction is due to the way that the participant only runs were
used in that work. In Figure 5 of the past work, a comparison was
made between track and participant conditions. However, it would
appear that there is a difference in the way that runs are considered.
While in the track condition the bottom 25% of runs were discarded
(as normal), in the participant condition they were not. Moreover,
in both conditions, Voorhees and Buckley aggregate data from dif-
ferent tracks and rearrange them by the absolute performance delta
in the pair; however, the same absolute performance delta may be
small or big depending on the track and, consequently, more or less
prone to swapping. We speculate that this difference in the range
of runs used and the way in which data points were aggregated
explains the apparent contradiction.

6.3 Fine-grained Run Pairwise Analysis
We have shown how multiple comparisons and working in track or
participant conditions can lead to different types of error. We have
also shown how overall approaches, i.e. properly adjusting for mul-
tiple comparisons to control the Type I error rate or increasing the
topic set size for reducing the publication bias, make experimental
conclusions more reliable. If we find that run pairs are significantly
different, how do we decide which are the best? Up to know, the
only criterion was the higher performance, the better; however,
we have seen that inconsistencies may be hidden in almost all the
performance ranges. Therefore, our answer to address this issue
was to introduce the probabilities of 𝑝𝐴𝐴 , 𝑝𝐴𝐷 , . . ., 𝑝𝐵𝑖𝑎𝑠 , and 𝑝𝐷𝑅

to be able to conduct a more fine-grained analysis on each single
pair and take a more informed decision based on how much more
reliable that pair is likely to be.

7 CONCLUSIONS
We asked if there is a prevalence of Type I errors in IR experiments
of the type typically published in IR forums? The answer appears to
be yes. Experimenting across three test collections, we established
that without the use of multiple testing correction, a large number
(40% − 50%) of statistically significant results in IR experiments are
likely to be Type I errors. Then we questioned if the error varies
when measured on the runs of single participants vs. all the runs
submitted to an evaluation track? Here we found no difference.
However, for tests run with different topics sizes, the number of
Type I errors increased as topic sizes reduced.

We ran experiments showing that there is a high level of inconsis-
tency in significant retrieval results conducted on participant only
runs, the family of runs that one typically sees in published research.
The level of inconsistency was 2-3 times higher for participant only
compared to experiments using all runs from a track.

Combining both of these results we are forced to conclude that
the level of Type I error in IR experiments using offline testing
resources is likely to be extremely high.

Given such inconsistency, how best can it be alleviated? The
most effective way of alleviating many of these Type I errors is to
implement correction through multiple testing as a standard in IR
publications. We also detailed an analysis of IR experiments that
allows an experimenter to understand whether a result is more
likely to be a Type I error or a genuine result.
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