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Recommender systems play a crucial role in personalizing user experiences, yet ensuring fairness in their outcomes remains
an elusive challenge. This work explores the impact of individual users or items on the fairness of recommender systems, thus
addressing a significant knowledge gap in the field. We introduce an innovative approach called Adding-based Counterfactual
Fairness Reasoning (ACFR), designed to elucidate recommendation fairness from the unique perspectives of users and
items. Conventional methodologies, like erasing-based counterfactual analysis, pose limitations, particularly in modern
recommender systems dealing with a large number of users and items. These traditional methods, by excluding specific
users or items, risk disrupting the crucial relational structure central to collaborative filtering recommendations. In contrast,
ACFR employs an adding-based counterfactual analysis, a unique strategy allowing us to consider potential, yet-to-happen
user-item interactions. This strategy preserves the core user-item relational structure, while predicting future behaviors
of users or items. The commonly-used feature-based counterfactual analysis, relying on gradient-based optimization to
identify interference on each feature, is not directly applicable in our case. In the recommendation scenario we consider, only
interactions between users and items are present during model training—no distinct features are involved. Consequently,
the traditional mechanism proves impractical for identifying interference on these existing interactions. Our extensive
experiments validate the superiority of ACFR over traditional baseline methods, demonstrating significant improvements
in recommendation fairness on benchmark datasets. This work, therefore, provides a fresh perspective and a promising
methodology for enhancing fairness in recommender systems.
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1 INTRODUCTION
Recommender systems have become indispensable in navigating the vast digital landscape, tailoring content,
products, and services to meet individual preferences [18, 22, 23, 37, 72]. While these systems are central to
enhancing user experience, the challenge of ensuring fairness within such algorithms is increasingly recognized [3,
12, 14, 19, 34, 40, 47, 56, 57, 68, 74]. The concept of fairness in recommender systems extends beyond mere
algorithmic accuracy; it involves a nuanced understanding of how biases can inadvertently be perpetuated
through user and item interactions. Traditional fairness explanation methods often overlook the granularity
of these interactions [17, 18, 62, 66, 67], thereby missing a comprehensive assessment of fairness within these
complex systems.
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This work introduces Adding-based Counterfactual Fairness Reasoning (ACFR), a novel methodology designed
to bridge this gap by analyzing fairness from the individual perspectives of users and items.Through counterfactual
reasoning [18, 50] and the generation of explanation scores, ACFR seeks to illuminate the intricate dynamics of
how specific users and items contribute to or detract from fairness in recommendations. This approach offers a
significant enhancement over traditional methods, providing a detailed exploration of the relationships between
fairness and user-item interactions.

The evolution of recommender systems has undeniably enhanced user engagement by tailoring experiences to
individual preferences. Yet, this personalization comes with the challenge of maintaining fairness, a multifaceted
concept involving the equitable distribution of recommendation benefits among users and visibility among
items. The interplay between fairness and accuracy further complicates this challenge, as efforts to optimize one
can inadvertently compromise the other [12, 14, 34, 47, 68]. Our investigation seeks not to solve this dilemma
outright but to explore the nuanced relationship between fairness and the myriad interactions that animate the
recommender systems landscape. Against this backdrop, our research is propelled by a set of inquiries aimed at
unraveling the complexities of fairness in recommender systems:

(1) ResearchQuestion 1:How do individual user-item interactions shape and potentially distort the fairness
of recommender systems?

(2) Research Question 2: How can we develop a methodological approach that emphasizes individual
user-item interactions to better understand the sources of unfairness?

(3) Research Question 3: How does the Adding-based Counterfactual Fairness Reasoning (ACFR) approach
address the identified shortcomings of traditional fairness explanation methodologies?

(4) ResearchQuestion 4:What empirical evidence supports the efficacy of the ACFR approach in explaining
recommendation fairness compared to existing methods?

Following the outlined research questions, our study delves into the intricacies of fairness in recommender
systems, proposing a novel approach to uncover and elucidate the factors influencing fairness through individual
interactions. This effort represents a pivotal move towards a more refined understanding of fairness, offering
insights crucial for the development of transparent and equitable recommendation algorithms. To illustrate the
depth of the issues at hand:

(1) Exploring User-Specific Influences: Imagine a scenario where certain users consistently receive
recommendations that misalign with their interests. An in-depth analysis of these users’ interactions
may reveal that their unique or niche preferences are overlooked by current recommendation algorithms,
leading to recommendations that starkly diverge from their actual interests. Understanding these user-item
interactions is essential for refining algorithms to better accommodate diverse user interests, ultimately
contributing to a fairer system.

(2) Investigating Item-Specific Influences: Conversely, consider the case where a narrow selection of
items dominates recommendations across a broad user spectrum, despite the existence of a varied and
extensive item catalog. A detailed examination of these particular items and their interactions with users
might uncover that the algorithm disproportionately favors them due to their broad appeal or high ratings.
Identifying such patterns is crucial for adjusting the system to encourage a wider distribution of items,
enhancing fairness in the process.

The primary takeaway here is that achieving fairness in recommender systems goes beyond simply analysing
broad groups of users and items - it necessitates an understanding of individual user-item interactions. A detailed
examination of these interactions fosters a profound understanding of the factors causing unfairness, ultimately
enabling a more tailored approach to rectifying these issues. With this work, we aim to bridge the existing
knowledge gap by scrutinizing whether specific users or items exert a positive or negative impact on the fairness
of recommender systems. To facilitate this, we put forth a novel approach, termed as Adding-based Counterfactual

ACM Trans. Inf. Syst.

 



Explaining Recommendation Fairness from a User/Item Perspective • 3

Fairness Reasoning (ACFR), that probes into the concept of fairness from the unique lens of individual users and
items.

Traditional methodologies, like erasing-based counterfactual analysis [18], often fall short in fully addressing
this concern, particularly in the context of contemporary recommender systems handling an expansive network
of users and items. By excluding specific users or items, these erasing-based methods disrupt the fundamental
relational structure, a critical component in collaborative filtering recommendations. In contrast, ACFR uses
an adding-based counterfactual analysis. This method speculates on future user-item behaviors by imputing
potential interactions that have not yet occurred, thereby preserving the integral structure of user-item relations.

Feature-based counterfactual analysis [18] is another prevalent methodology. However, its direct application
may not be feasible in our case. These methods typically apply gradient-based optimization to identify the
impact of each feature, thereby determining which features substantially influence recommendation fairness.
The procedure introduces random interferences for each feature and treats these interfered features as inputs to
the trained recommendation model. Following this, the method maintains the features constant and strives to
retain recommendation accuracy by minimizing the discrepancy between predictions and ground truths (i.e.,
predictions and interactions), while iteratively updating the interference to optimize a fairness objective.

However, in the context of recommendations we consider, features may not exist during the recommendation
model training process - only interactions between users and items do. Hence, we only investigate the influence of
interactions of specific users or items in this work. Contrary to features, interactions act as the ground truth rather
than model inputs, rendering the updating of interference on interactions via gradient-based methods impractical
when striving to minimize the accuracy-based loss between predictions and ground truths while keeping the
ground truths constant. Indeed, any alteration in interference on interactions will inevitably modify the ground
truths, making it unfeasible to optimize an objective when the ground truths are continuously changing. In order
to address this issue, our approach employs a unique gradient-based method through our ACFR system. This
method identifies the interferences on the imputed interactions between users and items to shed light on fairness.
In essence, the ACFR framework enhances fairness in recommender systems by imputing hypothetical user-item
interactions, simulating their potential impacts on fairness. It assesses each user and item’s effect on fairness,
identifying both positive and negative influences through a unique gradient-based optimization for imputation.
This process provides actionable insights into fairness improvements.

At the heart of ACFR lies the intuitive principle of counterfactual reasoning: by imagining alternative scenarios
‘what-ifs’ where users interact with items differently, we can anticipate the potential impacts on fairness. This core
intuition enables us to dissect the complex dynamics of recommender systems, identifying specific interactions
that contribute to or detract from fairness. By reimagining the interaction matrix through the lens of these
hypothetical scenarios, ACFR aims to not only illuminate the paths through which biases propagate but also
guide the development of more equitable recommendation algorithms.

We will detail this methodology in section 4, highlighting its proven superiority over baseline methods through
extensive experimentation. Through rigorous experimentation, we have demonstrated the superiority of our
proposed ACFR solution over baseline methods, significantly enhancing recommendation fairness on benchmark
datasets.

The main contributions of this work are as follows:

• This work, to the best of our knowledge, is the first effort on explainable recommendation fairness from
the perspective of individual users and items based on their current user-item interactions.

• This work proposed a novel adding-based counterfactual analysis that is tailored to suit the uniqueness of
our problem to overcome the shortcoming of the existing counterfactual-analysis-based method.
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• This work verified the superiority of the proposed solution compared to baseline methods on the bench-
mark datasets by comprehensive experiments in various aspects. The source code of this work is publicly
available via the link1.

2 RELATED WORK

2.1 Fairness in Ranking and Recommendations
Current recommender systems serve as intermediaries on multi-sided platforms by providing recommendations
that connect users to items. Based on this context, fairness concerns in recommender systems have drawn more
attention. Fairness in recommendation can be divided into user fairness [17, 33, 35, 47] and item fairness [34,
40, 43, 55, 71]. For example, [35] considers the user perspective by minimizing unfairness by a constrained
re-ranking method that adds constraints over evaluation metrics. [33] argues that those post-processing methods
that improve the diversity among recommendations contribute unfairness among users. They establish a method
for measuring user satisfaction and employ the Gini coefficient of satisfaction scores to determine user unfairness.
In a study by Fu et al. [17], a strategy is proposed that integrates fairness constraints with heuristic re-ranking
methods. This approach aims to mitigate issues related to user unfairness in explainable recommendation systems
that utilize knowledge graphs. [47] improves the user and item fairness by adding dummy data into the original
user-item matrix. [55] presents a method for formulating the visibility of items and outlines a computational
framework utilizing linear programming to optimize result ranking based on three forms of fairness constraints.
In [71], Yang and Stoyanovich reduce variations in the distribution of item visibility across different groups
using regularization techniques. Morik et al. [40] present a dynamic learning to a rank algorithm that addresses
the rich-get-richer dynamics and allows for a configurable allocation of exposure scheme. [43] presents a post-
processing method that re-ranks a given ranking to ensure that each item is guaranteed a minimum level of
exposure opportunity. [34] proposes a GAN-based fairness-aware recommendation based on implicit feedback,
which simultaneously solves the negative sampling issue and the item fairness issue. While these works have
significantly contributed to solving various fairness scenarios in recommendations, a critical perspective has been
largely overlooked: identifying the underlying causes of this unfairness. Understanding these causes is crucial for
diagnosing the fairness issues inherent to the system and devising effective strategies for improvement. Hence,
our study aims to bridge this gap by delving into the causes of unfairness in recommendation systems.

2.2 Explainable Recommendations
The goal of explainable recommendation is to create models that produce not only accurate recommendations,
but also provide explanations that are easily understood [2, 6, 10, 38, 76]. Explainable recommendation systems
can be classified into two categories: those that are intrinsic to the model, and those that are agnostic to the
model being used [36, 39]. The model-intrinsic approach involves creating models that are interpretable and
have a decision-making process that is clear, allowing for natural explanations of the model’s decisions [77]. The
model-agnostic approach, also known as the post-hoc explanation approach, enables the decision-making process
to be a blackbox [44, 65]. For instance, the Explicit Factor Model for explainable recommendation [77] used a
matrix factorization method [32] to generate recommendations and included an explanation sentence for each
recommended item. On the other hand, the Interpretable Convolutional Neural Network approach [53] created a
deep convolutional neural network model and showed item features to users as explanations. Another example
is the visually explainable recommendation [13] that uses a deep model to create image regional-of-interest
explanations. Recently, there have been proposals to use counterfactual reasoning to enhance explainability
in recommendation systems [21, 59–61, 70]. As an illustration, Ghazimatin et al. [21] endeavor to generate
provider-side counterfactual explanations by identifying the minimal set of a user’s historical actions, such as
1https://github.com/jasonshere/ACFR
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reviewing, purchasing, or rating, that, if removed, would lead to an altered recommendation. In [60], Tan et al.
proposed generating and evaluating explanations based on causal relations to the outcome. Although these works
have substantially advanced the field of explainable recommendations, they primarily focus on explaining the
mechanisms by which recommendations are generated. However, a significant gap remains: the need to explain
fairness in recommendations. This aspect is crucial because understanding the fairness of recommendations is
equally as important as understanding the generation of these recommendations. The current work attempts to
address this oversight by focusing on explaining the fairness of recommendations.

2.3 Fairness Explanations
Explainability and fairness are two crucial aspects for accountable recommendation systems, however, the
relationship between the two is not yet fully understood. There have been several early studies attempting to
provide explanations for fairness [9, 17, 18, 42]. As an example, the research conducted by Begley et al. [9] generates
explanations by applying Shapley value paradigm [54] to identify the difference of the feature contributions to
model disparity. Pan et al. [42] consider the causal relationships among feature variables and propose a novel
framework to decompose the disparity into the sum of contributions from fairness-aware causal paths linking the
sensitive attribute and the final predictions, on the graph. In [17], a fairness-conscious algorithm is proposed that
utilizes a knowledge graph to provide transparent diversity in recommendations and possibly identify relevant
items. Recently, [18] introduced a framework for explaining fairness in feature-based recommendations, utilizing
a counterfactual reasoning paradigm.

Previous works on fairness explanations have strived to elucidate the root causes of unfairness. However,
there’s a glaring absence of literature that provides fairness explanations on an individual user and item level.
Here’s why this is crucial:

• Foundation of Recommender Systems: Interactions between users and items serve as the ground truth
in recommendation model training [32, 49]. These interactions are indispensable, as they provide an accu-
rate representation of user preferences and item relevancy, ensuring the efficacy of the recommendation
model [5, 26].

• Challenges with Feature-based Explanations: While existing works have primarily focused on
explaining fairness from features, two significant issues arise:
– Noise in Features: Features used for training recommendation models might contain noise [77],

which can lead to sub-optimal [8] recommendations if not handled properly. Relying solely on
feature-based explanations can thus mislead or oversimplify the fairness landscape [18].

– Absence and Incompleteness: Features can often be absent, incomplete, or inconsistent across
different items or users, making them unreliable for fair explanations in some scenarios [4, 11, 52].

By emphasizing interactions, our research circumvents these challenges, ensuring more precise and
comprehensive fairness explanations. Given that interactions between individual users and items form
the bedrock of recommender systems, understanding fairness at this granular level is paramount. Our
research aims to fill this void by offering fairness insights tailored to individual users and items based on
their unique interactions.

In summary, while existing literature provides valuable insights into fairness and explainability, our research
offers a more nuanced approach, targeting the identified gaps and enhancing the overall understanding of fairness
in recommender systems.
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Symbols Description

G The recommendation model for generating explanations
G The recommendation model for imputing missing interactions
R The sparse matrix of observed user-item interactions
R̂ The dense matrix of predicted interactions
R̂G The predictions matrix generated by G
R̃ The dense matrix of imputed interactions
ˆ̃R The predictions generated by G training on R̃
ˆ̃R2 5 The counterfactual predictions generated by G after training on R̃
M The weight matrix representing if an interaction is observed
48 The mean squared error over known interactions of user 8
`8 The mean of all users’ mean squared error
r̃ The imputed interactions for a specific user/item
ˆ̃r The predicted interactions generated by G on imputed interactions for a specific user/item
= The number of users
< The number of items

ΨDB4A The individual user fairness measure
Ψ8C4< The individual item fairness measure
Ψ The fairness measure based on the predictions generated by the pre-trained G
Ψ2 5 The fairness measure based on the counterfactual predictions
l The weights of pre-trained G
l̃ The weights of pre-trained G after retraining on imputaed interactions
Δl̃ The changes of the weights of G
l̃2 5 The counterfactual weights of G

Table 1. Notations.

3 PRELIMINARY
In this work, we consider explaining both individual user unfairness and individual item unfairness in recom-
mendations 2. The notations used are explained in table 1.

3.1 Individual User Fairness
Individual user fairness encompasses the idea that each user should receive recommendations that are fair,
unbiased, and have the same prediction accuracy. The individual user unfairness can be represented as the
variance among all users’ loss [47]:

ΨDB4A (R, R̂) =
1
=

=∑
8=1

(48 − `4 )2, (1)

where R is the user-item interaction matrix with rows corresponding to users and the columns corresponding to
items, and the elements of R represent the corresponding rating or feedback given by the user to the item. R is
sparse because most of the entries are empty, which means that most of the users have not rated most of the

2Both fairness and unfairness are used in different places of the paper for a better description. Generally, an increase in fairness means a
decrease in unfairness and vice versa.
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items; R̂ is a dense matrix with the same shape as R and each element corresponds to the predicted rating for a
specific user-item pair; `4 is the mean of all users’ loss, = is the number of users, and 48 is the mean squared error
over known ratings of user 8 , which is denoted as:

48 =
| |r8 − r̂8 | |22

<8

, (2)

where<8 is the number of known ratings of user 8 .

3.2 Individual Item Fairness
Within our framework, individual item fairness is approached from the perspective of prediction parity, where
the fairness metric is concerned with the equality of predicted ratings across items for each user [34, 40, 47].
This contrasts with an exposure-based fairness viewpoint, which considers the visibility and ranking of items in
recommendation lists [15, 46, 51]. Given the predicted rating matrix R̂, we quantify individual item unfairness
through the variance in predicted ratings for all items across users, as follows:

Ψ8C4< (R̂) = 1
=

=∑
8=1

1
<

<∑
9=1

(Â8 9 − `Â8 )2, (3)

where `Â8 is the mean of predicted ratings of user 8 ,< is the number of items. This metric thus reflects prediction
parity fairness by evaluating the consistency of item ratings predictions made for each user, distinct from item
exposure fairness.

Establishing prediction parity fairness as a fundamental concept in our work is pivotal. It serves as the
groundwork fromwhichwe aim to extend intomore complex analyses of exposure-based fairness.This progression
underlines our belief that a solid understanding of prediction parity provides the necessary basis for delving into
the nuances of how items are ranked and exposed to users, marking a critical path for our future research efforts
in enhancing fairness within recommender systems.

User fairness emphasizes achieving parity in prediction accuracy across users, aiming to ensure equitable
satisfaction among them byminimizing disparities in how accurately their preferences are predicted.This approach
seeks to harmonize users’ satisfaction levels, contributing to user fairness. Conversely, item fairness centers on the
parity of predicted ratings across items, reflecting each item’s opportunity to be recommended. Higher predicted
ratings result in higher rankings, thereby increasing an item’s visibility. Therefore, reducing prediction disparities
across items levels the playing field, ensuring each has a fair chance of being recommended and achieving item
fairness. Reducing item prediction parity should logically contribute to reducing item exposure-based unfairness,
as items with more uniform prediction ratings would have a more balanced distribution in the recommendation
lists. This intuition suggests that efforts to equalize the predicted ratings across items can indirectly enhance the
fairness of item exposure, addressing one of the key mechanisms through which recommender systems influence
item visibility and user engagement.

3.3 Justification and Contextualization of User and Item Fairness Metrics
The importance of fairness metrics in recommender systems lies in their ability to address different aspects
of fairness: user fairness and item fairness. User fairness focuses on achieving parity in prediction accuracy
across users, ensuring that each user receives recommendations tailored to their preferences without algorithmic
bias [31, 35, 63]. This concept is grounded in the principle that equitable treatment in prediction accuracy leads to
a higher degree of user satisfaction, aligning with the ultimate goals of personalization and user engagement [40].

Conversely, item fairness centers on prediction parity across items, aiming to give each item an equal opportu-
nity to be recommended. While the objective of reducing item prediction disparity might appear to contradict the
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purpose of personalized recommendations, the goal is more sophisticated. It involves ensuring that no item is sys-
tematically underrepresented or overrepresented due to biases inherent in the recommendation algorithm [7, 47].
This metric acts as a safeguard against biases that might skew the system’s outputs, ensuring that the variations
in item recommendation are justifiable by true user preferences rather than arbitrary model discrepancies [34].

To contextualize these metrics effectively within the ecosystem of recommender system evaluations, they
should be considered alongside other key performance indicators such as accuracy, diversity, novelty, and overall
user satisfaction [15, 46]. This balanced approach helps to maintain the effectiveness of the recommender system
while ensuring fairness. User fairness metrics address the disparity in how the system serves different users, while
item fairness metrics ensure an equal chance of recommendation for all items within the catalog. Integrating
these considerations allows for a more comprehensive assessment of both personalization efficacy and fairness,
providing a holistic view of system performance [51].

4 ADDING-BASED COUNTERFACTUAL FAIRNESS REASONING
To illuminate the relationship between fairness and users/items through their current interactions, we introduce
an innovative solution named Adding-based Counterfactual Fairness Reasoning (ACFR). The ACFR process,
detailed in algorithm 1, unfolds in three pivotal steps designed to systematically evaluate and enhance fairness in
recommender systems:

• Unknown Interaction Estimation and Imputation: This initial step involves predicting potential
interactions between users and items that are not present in the current dataset but could reasonably
occur. These estimated interactions are then imputed into the dataset, enriching the existing user-item
matrix with a more comprehensive view of potential engagements.

• Adding-based Counterfactual Reasoning: Building on the enriched dataset, this phase employs
counterfactual analysis to explore hypothetical scenarios where certain user-item interactions are added.
This step assesses how these additions would affect the fairness of the recommendation outcomes, allowing
us to understand the specific contributions of different users and items to the overall fairness of the
system.

• Explanation Score Generation: The final step quantifies the impact of each user and item on the
system’s fairness through explanation scores. These scores provide a numerical representation of the
fairness contribution, distinguishing between entities that positively or negatively influence fairness. This
metric facilitates a clear, actionable understanding of where interventions may be needed to promote
fairness within the recommender system.

The ACFR methodology represents a significant advancement in fairness evaluation, offering a structured
approach to dissecting the nuanced relationship between user-item interactions and fairness outcomes. By
systematically implementing these steps, ACFR provides a detailed framework for identifying fairness imbalances
and devising strategies to address them, enhancing the equity of recommendations provided by the system.

Central to ACFR is the intuition that fairness in recommender systems can be deeply influenced by the subtle
dynamics of user-item interactions. By adopting a counterfactual approach, ACFR allows us to explore ‘what-if‘
scenarios, shedding light on how changes in these interactions might affect fairness outcomes. This methodology
underscores our belief that understanding and mitigating unfairness requires a detailed analysis of both the
individual and collective impact of these interactions on the recommendation process.

4.1 Unknown Interaction Estimation and Imputation
Initially, we employ a two-step modeling process where our primary recommendation model, referred to as G, is
meticulously trained to capture the nuances of existing user-item interactions within our dataset. Parallel to this,
we introduce a secondary model, also designated as G but specialized for imputation purposes, which undergoes
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Algorithm 1 The process of ACFR
1: Input: The user-item ratings matrix R, the number of steps (1 − BC4? , the number of steps (2 − BC4? .
2: Output: Explainability scores (ES) List L
3: Train the recommendation model G by minimizing eq. (4).
4: Train the recommendation model G by minimizing eq. (4).
5: Calculate Ψ based on predictions produced by G
6: Save weights l of G
7: for each user/item do
8: Reset weights of G to l
9: Predict missing interactions of the user/item using G

10: Impute missing interactions for the user/item, then we obtain r̃
11: for (1 − BC4? do
12: Retrain R with r̃ by minimizing eq. (7)
13: end for
14: Save l̃ of G
15: for (2 − BC4? do
16: Find Δl̃ by minimizing eq. (8)
17: end for
18: Calculate ES for the user/item via eq. (11)
19: L.append(ES)
20: end for
21:
22: return L

a similar training regimen on the same set of known interactions [48, 69]. The purpose of this sequential training
approach is to leverage the predictive capabilities of the imputation model G. It utilizes the learned patterns and
relationships from the known interactions to accurately forecast the unknown or missing interactions across the
user-item matrix. This predictive mechanism enables us to systematically impute these previously unidentified
interactions, thus enriching the interaction matrix with a comprehensive set of user-item relationships for
subsequent analysis. In this study, we utilize SVD++ [30, 64] (a classic matrix factorization model [32]) as G, and
DeepFM [22] (a classic deep-learning-based recommendation model) as G. Note that other recommendation
models can be used as substitutes for G and G.

We first train G and G on current user-item interactions by minimizing the mean squared error (MSE):

L"(� = | |R −M ∗ R̂||22, (4)

where R is the user-item interaction matrix; R̂ is the prediction matrix; the matrix M is a weight matrix with the
same shape as R and R̂, where an element is 1 if the corresponding user has rated the corresponding item, and 0
otherwise:

M 9

8
=

{
1, if user 8 interacted with item 9 ,
0, otherwise.

(5)

Given a particular user,3 the vector after imputing interactions is denoted as r̃ ∈ R̃:

R̃ = M ∗ R + (1 −M) ∗ R̂G, (6)
3The process for an item is same as that for a user unless specified otherwise. For the sake of description conciseness, we discuss user only in
many places in this Section.

ACM Trans. Inf. Syst.

 



10 • Jie Li, Yongli Ren, Mark Sanderson, and Ke Deng

where R̂G is the predictions matrix generated by pre-trained G. Eq. 6 outlines the process of maintaining the
original, known ratings within the matrix while substituting the missing ratings with predictions from G, thereby
enabling a comprehensive evaluation that integrates both actual user-item interactions and predicted preferences.
This approach ensures a balanced assessment, reflecting the system’s performance across known interactions
and potential recommendations, crucial for a nuanced understanding of fairness implications.

4.2 Adding-based Counterfactual Reasoning
The adding-based counterfactual reasoning aims to examine the impact of imputed interactions at the level of
individual users to recommendation fairness. Imputing interactions for some users may lead to the positive
impact of recommendation fairness while that for others may lead to negative impact.

Suppose we have imputed interactions for a particular user as eq. (6). The original and imputed interactions
of the user are represented by r̃ ∈ R̃. Then, by treating r̃ as the real interactions of the user, we can update the
weights of the pre-trained model G from l to l̃ . This can be done by minimizing the mean squared error between
the predicted interactions of the user using G, denoted as ˆ̃r, and the interactions in r̃:

L( ˆ̃r) = | |r̃ − ˆ̃r| |22, (7)

Then we slightly intervene the weights l̃ of G with Δl̃ . That is, the weights of G turns to l̃2 5 by adding Δl̃

to the weights l̃ of G. It is worth mentioning that the reason we consider intervening all weights of G is that
retraining G with r̃ will affect all weights of G, not just a subset of them. With the new weights l̃2 5 , G will
change the predictions from ˆ̃R to the counterfactual predictions ˆ̃R2 5 . The counterfactual predictions will change
the fairness measure from Ψ to Ψ2 5 . The objective of adding-based counterfactual reasoning is to determine the
smallest adjustments to the weights l̃ that will lead to the greatest decrease in Ψ, by minimizing the objective
function:

min Ψ2 5 + U · | |Δl̃ | |22, (8)
where U is a hyper-parameter to control the weight between the two terms. The first term of the objective function
is intended to achieve the greatest decrease in unfairness, while the second term represents the difference between
the original weights and the counterfactual weights. It is worthmentioning that identifying changes in interactions
r̃ directly can be difficult as it is challenging to pass gradients directly to r̃ when minimizing Ψ2 5 .

If the goal is to generate explanations for user fairness as defined in eq. (1), the fairness measure Ψ is denoted
as ΨDB4A and Ψ2 5 is denoted as Ψ2 5

DB4A . If the goal is to generate explanations for item fairness as defined in eq. (3),
Ψ is denoted as Ψ8C4< and Ψ2 5 is denoted as Ψ2 5

8C4<
.

4.3 Explainability Score Generation
For each user, after solving the counterfactual optimization problem by minimizing eq. (8), the minimal change
Δl̃ and the predictions of the corresponding interactions based on the adjusted weights of G will be obtained.
Following [18], ValidityV is calculated to measure the impact on recommendation fairness caused by the weights’
perturbation:

V = Ψ − Ψ2 5 , (9)
and Proximity P is then calculated to measure the degree of change in the weights of G, which is represented by
the difference between the weights updated on r̃ and the counterfactual weights:

P = | |Δl̃ | |22 . (10)

Then the explainability score (ES) can be calculated for each user or item based on their corresponding counter-
factuals:

�( = V − V · P, (11)
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where V ∈ (0, 1) is a hyper-parameter to control the importance of Validity. The ES measures how effective a
user/item’s interactions are at reducing unfairness in model G. A higher ES indicates a greater ability to improve
fairness.

5 EMPIRICAL EVALUATION

5.1 Datasets
To evaluate the effectiveness of the proposed ACFR, we followed [18, 33, 34] and conducted experiments on three
real-world datasets from Amazon4 [25] and MovieLens5 [24]:

• Toys and Games, which includes 2,252,771 interactions from 1,342,911 users on 327,698 items;
• Beauty , which contains 2,023,070 interactions between 1,210,271 users and 249,274 items;
• MovieLens 100k, which contains 100,000 interactions between 943 users and 1682 items.
• MovieLens 25M , which contains 25 million interactions between 62,000 movies by 162,000 users, released

in December of 2019.
Similar to MovieLens [24], we remove users and items with less than 10 interactions for Toys and Games, and
Beauty datasets. For the experiments, we used a 5-fold cross-validation method and report the average results on
the test dataset.

5.2 Baselines
The core application of ACFR is identifying the key users and items which are related to recommendation fairness,
either user fairness or item fairness. Since no method exists to solve the same problem, we adopt the following
methods as baselines:

• Random-User selects # users from all users at random, without replacement.
• Random-Item selects # items from all items at random, without replacement.
• Active-User selects the top # most active users from the entire set of users.
• Inactive-User selects the top # least active users from the entire set of users.
• Active-Item selects the top # most active items from the entire set of items.
• Inactive-Item selects the top # least active items from the entire set of items.

For the proposed ACFR, we set the hyper-parameter U = 0.01 (eq. (8)) and V = 0.07 (eq. (11)). Themodel parameters
of G and G are optimized by Adam optimizer. The learning rate for training G is 1e-4, and the learning rate for
training G is 1e-3. For both G and G, the dimension of latent factors is set as 20. The number of hidden units in
each layer of DNN of G is set to 16, and we set the number of layers as 2. We use A4;D as the activation function
of DNN layers. For the regularization and bias coefficients specific to G, we adopted a value of 1e-3, aimed at
preventing overfitting while allowing the model sufficient flexibility to capture the underlying patterns in the
data. Additionally, a dropout rate of 0.1 was applied to G to further mitigate the risk of overfitting by randomly
omitting a portion of the feature detectors on each training pass.

In our investigation of fairness within recommender systems, we introduce eight distinct variants of the ACFR
framework. Each variant is tailored to assess and elucidate fairness from the unique perspectives of either users
or items, employing a nuanced analysis that accounts for their individual contributions to fairness or unfairness.
The designation of “User” or “Item” following “ACFR-” explicitly signifies the focus of the analysis on either
users or items. The subscripts D and 8 within ACFR-*D or ACFR-*8 categorically indicate the target of the fairness
evaluation—user fairness or item fairness, respectively. Additionally, the symbols “(-)” and “(+)” are used to

4https://cseweb.ucsd.edu/ jmcauley/datasets.html
5https://grouplens.org/datasets/movielens/
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distinguish between the entities considered to have a negative or positive impact on fairness, respectively, based
on their Explanation Score (ES):

• ACFR - UserD (-): This variant is designed to identify a subset of users deemed to have the most significant
negative impact on user fairness. It focuses on those with the lowest ES, suggesting they contribute less
to promoting fairness within the system.

• ACFR - UserD (+): Conversely, this variant targets users who are assessed to positively influence user
fairness the most, indicated by having the highest ES. These users are considered pivotal in enhancing the
fairness of the recommender system.

• ACFR - User8 (-): Similar to the first variant, but with a focus on item fairness, this variant identifies users
who negatively affect item fairness, again based on the lowest ES.

• ACFR - User8 (+): This variant identifies users who have a positive impact on item fairness, selecting those
with the highest ES among the user base, suggesting their interactions promote a more equitable item
representation.

• ACFR - ItemD (-): Targets items that, based on their ES, are determined to have the most substantial negative
impact on user fairness. These items are identified as contributing least towards equitable user experiences.

• ACFR - ItemD (+): Focuses on items that positively affect user fairness, selecting those with the highest ES.
Such items are crucial for ensuring users receive fair and balanced recommendations.

• ACFR - Item8 (-): Identifies items with the lowest ES that negatively impact item fairness, highlighting
items that might contribute to an imbalance in item visibility or representation.

• ACFR - Item8 (+): Identifies items with the highest ES that positively influence item fairness, ensuring a
diverse and equitable distribution of item recommendations across the user base.

This structured approach allows for a granular analysis of fairness within recommender systems, illuminating
the roles individual users and items play in shaping the fairness landscape. By quantifying the impact of specific
entities through their Explanation Scores (ES), the ACFR framework offers a nuanced tool for understanding and
addressing fairness in recommendations.

5.3 Evaluation Methods
The erasing-based counterfactual analysis method in the previous work [18] measures how much the recom-
mendation performance would change after the “most important” features are removed. Differently, we use an
adding-based counterfactual analysis method that measures how the recommendation fairness changes after
adding additional interactions to the selected # users/items. For all baselines and all variants of ACFR, the
unknown interactions of the selected # users/items are predicted and imputed using model G, then the adding-
based counterfactual analysis is based on training the recommendation model G before and after maximizing
recommendation fairness as discussed in section 4. In this study, we chose to use N=10, N=20, and N=30.

5.4 Metrics
To evaluate the quality of our recommendations, we rely on three commonly used metrics: Precision [45],
Normalized Discounted Cumulative Gain (NDCG) [16, 29], and Root Mean Square Error (RMSE) [28]. Precision
measures the proportion of recommended items that are relevant, NDCG evaluates the effectiveness of the
ranking of recommended items by taking into account their relevance and position, and RMSE measures the
accuracy of the recommendation system by comparing predicted ratings with actual ratings. We measure the
performance of Precision and NDCG at a recommendation length of 5. A higher value of Precision and NDCG
indicates better recommendation quality. For RMSE, a smaller value represents the better recommendations
accuracy. Additionally, we measure the fairness of our recommendations using two metrics: one that assesses
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unfairness among individual users (using eq. (1)) and another that evaluates individual item unfairness (using
eq. (3)). A smaller value for both user and item unfairness metrics represents better recommendation fairness.

5.5 Experimental Results
In this section, we provide the results of the evaluation metrics - Precision@5, NDCG@5, RMSE, User Unfairness,
and Item Unfairness - that were obtained from the predictions of G. The model was retrained, incorporating the
imputed interactions of selected users or items (with N=10, 20, and 30). We present the outcomes separately from
the perspectives of users and items. Tables table 2 and table 3 gauge the ability of ACFR to discern users and
items that have a beneficial impact on both user fairness and item fairness.

Conversely, Tables table 4 and table 5 test the potential of ACFR to detect users and items that impart a
detrimental effect on both user fairness and item fairness. To ensure a fair comparison, we juxtapose the user-
focused variants of ACFR with the user-focused baselines (i.e., Random-User, Active-User, and Inactive-User).
Similarly, we put the item-focused variants of ACFR up against the item-focused baselines (i.e., Random-Item,
Active-Item, and Inactive-Item).

5.5.1 Analysis of Users Positively Impacting Fairness. In this section, we aim to elucidate the adeptness of our
proposed system, ACFR, in identifying users who make a positive contribution to both user and item fairness. We
turn to the results presented in table 2 to provide a concrete illustration of this capability. In our analysis focusing
on user fairness across different settings, we find that the Inactive-User baseline outperforms other baseline
methods at N=10, 20, and 30, particularly within the Toys and Games and Beauty datasets. This observation points
to the Inactive-User baseline’s effective performance in promoting user fairness under these specific evaluation
settings. However, when we turn our attention to the MovieLens 100K dataset, the picture becomes less clear-cut.
In this case, no single baseline model demonstrates a significantly superior performance in user fairness than
the others, which highlights the complexities and diverse user behaviors inherent in different datasets. When
it comes to item fairness, the Active-User leads the pack on the Beauty and MovieLens 100k datasets. On the
Toys and Games dataset, however, the landscape shifts and we observe both the Random-User and Inactive-User
outperforming the rest.

In the face of stiff competition, the ACFR variants, denoted as ACFR - UserD (+) and ACFR - User8 (+), stand
out. The former excels across all datasets in terms of user fairness, while the latter surpasses all baselines in
item fairness on every dataset examined. This exemplary performance solidly establishes the prowess of ACFR
in accurately pinpointing users who have a positive bearing on either user or item fairness. The demonstrated
superiority of ACFR reaffirms its value in explaining fairness in recommender systems. By effectively detecting
users contributing positively to the overall fairness, ACFR presents a concrete step forward in balancing the often
competing demands of personalized recommendation and fairness.

It is imperative to note, however, that the primary goal of our investigation is not to directly enhance fairness
metrics but to illuminate the roles individual users and items play in affecting fairness—both positively and
negatively—within the ecosystem of a recommender system. Observations related to changes in accuracy metrics,
as a result of prioritizing fairness, fall outside the direct purview of our study. Our focus lies in identifying
entities that contribute to or detract from fairness, thereby offering nuanced insights into the dynamics of
fairness in recommender systems. This analytical perspective allows us to delve deeper into the mechanics of
recommendation fairness, underscoring our commitment to advancing understanding in this critical area of
research.

5.5.2 Analysis of Items Positively Impacting Fairness. In this section, we broaden our investigation to determine
how well ACFR performs in identifying items that positively influence both user and item fairness. This element is
pivotal to enhancing the overall fairness of the recommendation system. The results exhibited in table 3 indicate
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Methods
Precision@5 (%) NDCG@5 (%) RMSE User Unfairness Item Unfairness

N=10 N=20 N=30 N=10 N=20 N=30 N=10 N=20 N=30 N=10 N=20 N=30 N=10 N=20 N=30

Toys and Games

The Model G 0.316 0.372 0.959 1.280 0.136

Random-User 0.339 0.361 0.293 0.391 0.405 0.350 0.943 0.939 0.940 1.191 1.171 1.169 0.135 0.135 0.135

Active-User 0.384 0.361 0.361 0.426 0.416 0.395 0.951 0.948 0.945 1.254 1.238 1.235 0.138 0.137 0.137

Inactive-User 0.316 0.339 0.271 0.359 0.390 0.332 0.941 0.938 0.937 1.179 1.157 1.153 0.136 0.134 0.135

ACFR - UserD (+) 0.316 0.316 0.316 0.389 0.389 0.387 0.939 0.939 0.939 1.149 1.148 1.147 0.134 0.136 0.136

ACFR - User8 (+) 0.339 0.316 0.316 0.386 0.375 0.375 0.942 0.940 0.940 1.207 1.193 1.196 0.132 0.132 0.132

Beauty

The Model G 0.108 0.143 0.895 1.212 0.178

Random-User 0.171 0.109 0.140 0.264 0.167 0.211 0.889 0.889 0.887 1.181 1.134 1.134 0.164 0.171 0.166

Active-User 0.155 0.171 0.202 0.256 0.243 0.263 0.892 0.890 0.890 1.216 1.214 1.210 0.161 0.162 0.162

Inactive-User 0.155 0.155 0.124 0.221 0.218 0.160 0.889 0.888 0.888 1.145 1.126 1.115 0.173 0.172 0.174

ACFR - UserD (+) 0.109 0.109 0.109 0.144 0.153 0.153 0.890 0.890 0.890 1.112 1.100 1.097 0.177 0.177 0.177

ACFR - User8 (+) 0.140 0.140 0.124 0.193 0.212 0.182 0.891 0.889 0.888 1.214 1.204 1.204 0.153 0.153 0.153

MovieLens 100k

The Model G 2.632 2.775 0.942 0.399 0.310

Random-User 3.992 3.270 3.652 4.170 3.466 3.952 0.943 0.941 0.941 0.394 0.383 0.390 0.280 0.252 0.264

Active-User 3.907 3.524 3.482 4.095 3.702 3.688 0.942 0.941 0.941 0.396 0.388 0.387 0.260 0.253 0.252

Inactive-User 3.652 3.949 4.076 3.879 4.113 4.195 0.942 0.943 0.942 0.389 0.389 0.388 0.298 0.294 0.285

ACFR - UserD (+) 2.696 2.696 2.718 2.839 2.838 2.887 0.946 0.944 0.944 0.374 0.374 0.373 0.257 0.243 0.246

ACFR - User8 (+) 2.803 2.845 2.718 2.943 2.974 2.857 0.945 0.945 0.945 0.383 0.384 0.382 0.229 0.228 0.228

Table 2. Analysis of Users Positively Impacting Fairness: Accuracy (Precision@5, NDCG@5, RMSE) and Fairness (User
Unfairness, Item Unfairness) - Best Results Highlighted in Bold.

that, concerning user fairness, the Random-Item stands out by surpassing other baselines on the MovieLens 100k
datasets. On the Toys and Games dataset, Random-Item outperforms other baselines on user fairness when #

equals 10 and 20. However, when # is 30, the Inactive-Item takes the lead in terms of user fairness. Similarly,
on the Beauty dataset, the Inactive-Item outperforms all other baselines. When it comes to item fairness, the
Active-Item consistently outperforms other baselines across different values of # (10, 20, and 30) on the Toys
and Games dataset, and for # values of 20 and 30 on the Beauty dataset. As for the MovieLens 100k dataset, the
Random-Item surpasses all other baselines.

What stands as an endorsement of ACFR’s robustness is the performance of its variants, ACFR - ItemD (+) and
ACFR - Item8 (+). Both these variants outperform all the baselines in terms of user fairness and item fairness
across all the datasets. This solidifies the fact that ACFR is proficient at identifying those items that have a positive
influence on both aspects of fairness, thus leading to more equitable recommendations.
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Methods
Precision@5 (%) NDCG@5 (%) RMSE User Unfairness Item Unfairness

N=10 N=20 N=30 N=10 N=20 N=30 N=10 N=20 N=30 N=10 N=20 N=30 N=10 N=20 N=30

Toys and Games

The Model G 0.316 0.372 0.959 1.280 0.136

Random-Item 0.406 0.339 0.316 0.471 0.404 0.378 0.942 0.939 0.939 1.166 1.151 1.152 0.140 0.141 0.140

Active-Item 0.316 0.271 0.293 0.416 0.359 0.377 0.946 0.943 0.941 1.200 1.180 1.176 0.137 0.137 0.138

Inactive-Item 0.361 0.271 0.316 0.404 0.356 0.396 0.943 0.939 0.937 1.187 1.162 1.146 0.139 0.140 0.141

ACFR - ItemD (+) 0.293 0.248 0.293 0.366 0.328 0.366 0.937 0.937 0.937 1.139 1.137 1.134 0.147 0.147 0.147

ACFR - Item8 (+) 0.361 0.293 0.339 0.405 0.351 0.407 0.958 0.958 0.956 1.283 1.283 1.272 0.129 0.126 0.126

Beauty

The Model G 0.108 0.143 0.895 1.212 0.178

Random-Item 0.155 0.124 0.109 0.181 0.169 0.137 0.889 0.886 0.885 1.131 1.083 1.072 0.173 0.184 0.188

Active-Item 0.124 0.124 0.124 0.162 0.168 0.161 0.887 0.886 0.885 1.106 1.098 1.094 0.182 0.180 0.180

Inactive-Item 0.124 0.140 0.140 0.186 0.204 0.206 0.888 0.887 0.887 1.054 1.055 1.049 0.199 0.199 0.198

ACFR - ItemD (+) 0.124 0.124 0.124 0.159 0.162 0.170 0.887 0.887 0.887 1.050 1.046 1.048 0.203 0.205 0.205

ACFR - Item8 (+) 0.218 0.218 0.233 0.271 0.301 0.310 0.895 0.894 0.893 1.224 1.200 1.200 0.166 0.166 0.164

MovieLens 100k

The Model G 2.632 2.775 0.942 0.399 0.310

Random-Item 2.611 2.718 2.611 2.720 2.861 2.683 0.942 0.940 0.940 0.385 0.384 0.384 0.294 0.298 0.301

Active-Item 2.357 2.357 2.378 2.429 2.400 2.464 0.943 0.942 0.942 0.408 0.406 0.406 0.307 0.306 0.304

Inactive-Item 2.972 2.866 2.909 3.238 3.125 3.093 0.942 0.942 0.942 0.391 0.385 0.385 0.314 0.327 0.331

ACFR - ItemD (+) 2.463 2.399 2.442 2.527 2.439 2.426 0.944 0.944 0.945 0.383 0.379 0.377 0.308 0.319 0.325

ACFR - Item8 (+) 2.654 2.633 2.633 2.804 2.790 2.790 0.949 0.949 0.949 0.419 0.421 0.421 0.268 0.266 0.265

Table 3. Analysis of Items Positively Impacting Fairness: Accuracy (Precision@5, NDCG@5, RMSE) and Fairness (User
Unfairness, Item Unfairness) - Best Results Highlighted in Bold.

5.5.3 Analysis of Users Negatively Impacting Fairness. This section is dedicated to evaluating ACFR’s proficiency
in pinpointing users that exert a negative impact on both user fairness and item fairness. As such, our attention
is geared towards the methods that display the poorest performance concerning user fairness or item fairness.
As per the results presented in table 4, the Active-User consistently lags behind the other baselines concerning
user fairness on the Toys and Games and Beauty datasets. On the MovieLens 100k dataset, the Inactive-User
fares the worst in terms of user fairness when # is set to 20 and 30, whereas the Active-User shows the poorest
performance at # = 10. In the context of item fairness, the Active-User underperforms on the Toys and Games
dataset, with the Inactive-User displaying the weakest performance on the Beauty and MovieLens 100k datasets.

The performance of ACFR’s variants, specifically ACFR - UserD (−) and ACFR - User8 (−) (values highlighted
with an underline), provides an intriguing insight. These variants manifest the weakest performance among
all baselines across all datasets concerning user fairness and item fairness, individually, even trailing behind
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Methods
Precision@5 (%) NDCG@5 (%) RMSE User Unfairness Item Unfairness

N=10 N=20 N=30 N=10 N=20 N=30 N=10 N=20 N=30 N=10 N=20 N=30 N=10 N=20 N=30

Toys and Games

The Model G 0.316 0.372 0.959 1.280 0.136

Random-User 0.339 0.361 0.293 0.391 0.405 0.350 0.943 0.939 0.940 1.191 1.171 1.169 0.135 0.135 0.135

Active-User 0.384 0.361 0.361 0.426 0.416 0.395 0.951 0.948 0.945 1.254 1.238 1.235 0.138 0.137 0.137

Inactive-User 0.316 0.339 0.271 0.359 0.390 0.332 0.941 0.938 0.937 1.179 1.157 1.153 0.136 0.134 0.135

ACFR - UserD (−) 0.384 0.384 0.384 0.449 0.445 0.442 0.956 0.955 0.954 1.269 1.275 1.272 0.137 0.138 0.138

ACFR - User8 (−) 0.339 0.384 0.429 0.421 0.420 0.474 0.950 0.948 0.949 1.244 1.226 1.235 0.142 0.142 0.141

Beauty

The Model G 0.108 0.143 0.895 1.212 0.178

Random-User 0.171 0.109 0.140 0.264 0.167 0.211 0.889 0.889 0.887 1.181 1.134 1.134 0.164 0.171 0.166

Active-User 0.155 0.171 0.202 0.256 0.243 0.263 0.892 0.890 0.890 1.216 1.214 1.210 0.161 0.162 0.162

Inactive-User 0.155 0.155 0.124 0.221 0.218 0.160 0.889 0.888 0.888 1.145 1.126 1.115 0.173 0.172 0.174

ACFR - UserD (−) 0.202 0.186 0.186 0.270 0.273 0.291 0.894 0.893 0.892 1.244 1.244 1.239 0.159 0.158 0.157

ACFR - User8 (−) 0.140 0.140 0.124 0.200 0.211 0.200 0.893 0.893 0.893 1.189 1.188 1.187 0.177 0.176 0.176

MovieLens 100k

The Model G 2.632 2.775 0.942 0.399 0.310

Random-User 3.992 3.270 3.652 4.170 3.466 3.952 0.943 0.941 0.941 0.394 0.383 0.390 0.280 0.252 0.264

Active-User 3.907 3.524 3.482 4.095 3.702 3.688 0.942 0.941 0.941 0.396 0.388 0.387 0.260 0.253 0.252

Inactive-User 3.652 3.949 4.076 3.879 4.113 4.195 0.942 0.943 0.942 0.389 0.389 0.388 0.298 0.294 0.285

ACFR - UserD (−) 3.928 3.970 4.013 4.056 4.189 4.257 0.943 0.942 0.942 0.403 0.398 0.396 0.266 0.262 0.261

ACFR - User8 (−) 3.843 3.779 3.694 4.067 4.035 3.864 0.943 0.942 0.942 0.400 0.395 0.395 0.319 0.313 0.316

Table 4. Analysis of Users Negatively Impacting Fairness: Results on accuracy (Precision@5, NDCG@5 and RMSE) and
fairness (User Unfairness and Item Unfairness). The best results are bold-faced.

the performance of Model G. This underscores ACFR’s versatility in not only recognizing users who contribute
positively to fairness but also identifying those who negatively influence fairness.

5.5.4 Analysis of Items Negatively Impacting Fairness. In this section, our focus shifts to examining ACFR’s
capability in pinpointing items that create adverse effects on both user fairness and item fairness. Our emphasis,
similar to the previous section, remains on the methods that exhibit subpar performance in terms of user fairness
or item fairness. The results presented in table 5 indicate that the Active-Item typically falls short of other
baselines concerning user fairness on the Toys and Games and MovieLens 100k datasets. On the Beauty dataset,
the performance of the Random-Item is the least impressive in terms of user fairness when # = 10. However, it
is the Active-Item that shows the poorest performance when # = 20 and # = 30. From the perspective of item
fairness, the Inactive-Item lags on the Beauty and MovieLens 100k datasets. On the Toys and Games dataset, the
performance of the Random-Item and Inactive-Item appears to be comparable.
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Methods
Precision@5 (%) NDCG@5 (%) RMSE User Unfairness Item Unfairness

N=10 N=20 N=30 N=10 N=20 N=30 N=10 N=20 N=30 N=10 N=20 N=30 N=10 N=20 N=30

Toys and Games

The Model G 0.316 0.372 0.959 1.280 0.136

Random-Item 0.406 0.339 0.316 0.471 0.404 0.378 0.942 0.939 0.939 1.166 1.151 1.152 0.140 0.141 0.140

Active-Item 0.316 0.271 0.293 0.416 0.359 0.377 0.946 0.943 0.941 1.200 1.180 1.176 0.137 0.137 0.138

Inactive-Item 0.361 0.271 0.316 0.404 0.356 0.396 0.943 0.939 0.937 1.187 1.162 1.146 0.139 0.140 0.141

ACFR - ItemD (−) 0.361 0.271 0.339 0.374 0.340 0.393 0.956 0.957 0.957 1.276 1.283 1.282 0.132 0.130 0.129

ACFR - Item8 (−) 0.293 0.293 0.293 0.366 0.366 0.366 0.936 0.936 0.935 1.133 1.135 1.131 0.147 0.147 0.148

Beauty

The Model G 0.108 0.143 0.895 1.212 0.178

Random-Item 0.155 0.124 0.109 0.181 0.169 0.137 0.889 0.886 0.885 1.131 1.083 1.072 0.173 0.184 0.188

Active-Item 0.124 0.124 0.124 0.162 0.168 0.161 0.887 0.886 0.885 1.106 1.098 1.094 0.182 0.180 0.180

Inactive-Item 0.124 0.140 0.140 0.186 0.204 0.206 0.888 0.887 0.887 1.054 1.055 1.049 0.199 0.199 0.198

ACFR - ItemD (−) 0.155 0.155 0.155 0.202 0.220 0.237 0.891 0.889 0.888 1.152 1.139 1.126 0.168 0.166 0.168

ACFR - Item8 (−) 0.124 0.124 0.124 0.170 0.170 0.170 0.887 0.888 0.887 1.047 1.045 1.044 0.205 0.206 0.206

MovieLens 100k

The Model G 2.632 2.775 0.942 0.399 0.310

Random-Item 2.611 2.718 2.611 2.720 2.861 2.683 0.942 0.940 0.940 0.385 0.384 0.384 0.294 0.298 0.301

Active-Item 2.357 2.357 2.378 2.429 2.400 2.464 0.943 0.942 0.942 0.408 0.406 0.406 0.307 0.306 0.304

Inactive-Item 2.972 2.866 2.909 3.238 3.125 3.093 0.942 0.942 0.942 0.391 0.385 0.385 0.314 0.327 0.331

ACFR - ItemD (−) 2.590 2.718 2.611 2.679 2.843 2.767 0.943 0.947 0.946 0.401 0.410 0.407 0.294 0.270 0.272

ACFR - Item8 (−) 2.505 2.484 2.484 2.574 2.569 2.551 0.946 0.946 0.946 0.384 0.384 0.384 0.354 0.354 0.354

Table 5. Analysis of Items Negatively Impacting Fairness: Results on accuracy (Precision@5, NDCG@5 and RMSE) and
fairness (User Unfairness and Item Unfairness). The best results are bold-faced.

Upon examining the performance of the specific variants ofACFR, namelyACFR - ItemD (−) andACFR - Item8 (−)
(values highlighted with an underline), we discern a compelling trend. These variants uniformly register the
least impressive performance among all baselines across every dataset, irrespective of whether we consider user
fairness or item fairness, and even fall short of Model G′s performance. This underlines the multifaceted capacity
of ACFR in not just identifying items that contribute positively to fairness, but also recognizing those that cast a
negative influence on fairness.

A noteworthy observation is that ACFR - Item8 (−) exhibits the best performance concerning user fairness on
all datasets, while ACFR - ItemD (−) shines in terms of item fairness across all datasets. This implies a peculiar
dynamic: items that negatively influence user fairness seem to have a positive impact on item fairness, and vice
versa. Items that cast a negative influence on item fairness appear to enhance user fairness.
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5.5.5 Discussion on the Trends across N=10/20/30. Understanding the trends and variations observed at different
levels of # , particularly at # = 10, # = 20, and # = 30, requires a closer look into the potential factors influencing
these outcomes. Two primary reasons emerge:

• Diverse Fairness Impact among Top Users/Items:The set of # users or items likely contain a mixture,
where some elements play a positive role in influencing fairness while others may contribute negatively.

• Inherent Characteristics of ACFR’s Explainability Score (ES): While ACFR demonstrates capability
in capturing the correlation between ES and fairness, it may not always pinpoint an exact ES for every
user or item. As illustrated in fig. 6b (where the G-axis represents ES values, the ~-axis denotes user
unfairness, and each dot symbolizes an individual user), there’s a variance in how users with comparable
ES influence fairness. However, the robust Pearson’s Correlation of -0.905 between user unfairness and ES
underlines its high negative correlation, emphasizing that despite some inconsistencies, the ES computed
by ACFR remains intrinsically linked to fairness.

With these reasons as a backdrop, specific patterns in the data can be elucidated:

• Observation from the Beauty Dataset (table 3): ACFR - ItemD (+) on the Beauty dataset demonstrates
a pattern of user unfairness decreasing from # = 10 to # = 20, followed by an increase from # = 20 to #

= 30. This aligns with the first reason. The top set of 20 items seem to have a pronounced capability to
ameliorate user fairness. However, on expanding the scope to 30 items, certain newly integrated items
may start exerting a negative influence on user fairness.

• Insights from the Toys and Games Dataset (table 4): ACFR - UserD (−) shows a trend where user
unfairness climbs from # = 10 to # = 20 and subsequently falls from # = 20 to # = 30. This trend can be
ascribed to the first reason, indicating that all users from # = 10 to # = 20 predominantly hamper user
fairness. Yet, a subset of users added between # = 20 to # = 30 might have started imparting a positive
effect on user fairness.

• Further Observations from Toys and Games & MovieLens 100k (table 5): Noteworthy is the
performance trend of ACFR - ItemD (−) in relation to user unfairness. For both datasets, an increase from
# = 10 to # = 20 is followed by a subsequent decrease from# = 20 to # = 30. Rooted in the first reason, this
suggests that items within the # = 10 to # = 20 bracket potentially detract from user fairness. Conversely,
some items in the # = 20 to # = 30 range seem to be positively influencing fairness.

• Observations on the MovieLens 100k Dataset (table 4): In the context of item unfairness, a distinctive
pattern is observed with ACFR - User8 (−). While the metric exhibits a decrease at # = 20, it subsequently
increases at # = 30. Informed by the second reason, it’s plausible that users within the # = 10 to 20
range comprise individuals who contribute positively to item fairness. This could counterbalance some of
the adverse effects from the top 10 users. However, the rise observed at # = 30 suggests that the newly
included users might exert a more potent negative influence on item fairness, diminishing the positive
impacts from the earlier group.

5.5.6 Understanding the Interplay between Accuracy and Fairness. In this part of the discussion, we will navigate
through scenarios where there is a mutual elevation in accuracy (Quantified through Precision@5, NDCG@5,
RMSE) and fairness (user-focused and item-focused). As corroborated by preceding studies [20, 27, 73], aug-
menting additional information through these interactions potentially boosts the accuracy in the generation of
recommendations. Our proposed system, ACFR, makes a significant contribution in this regard by successfully
detecting those users or items for whom imputed interactions result in a positive change in user fairness or item
fairness. However, we must make a noteworthy observation here - in the MovieLens 100k dataset, those users or
items that contribute positively to fairness end up negatively impacting accuracy. This brings to light a possible
balancing act between fairness and accuracy that needs to be managed.
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Method Random-User Random-Item Active-User Inactive-User Active-Item Inactive-Item

Toys and Games

ACFR - Item8 (−)(ΨDB4A ) 0.0106 0.3239 0.001 0.1198 0.0025 0.0862
ACFR - Item8 (+)(Ψ8C4<) 0.001 0.001 0.001 0.001 0.001 0.001

Beauty

ACFR - Item8 (−)(ΨDB4A ) 0.001 0.035 0.001 0.001 0.0207 0.9
ACFR - User8 (+)(Ψ8C4<) 0.002 0.001 0.0713 0.001 0.001 0.001

MovieLens 100k

ACFR - UserD (+)(ΨDB4A ) 0.001 0.0134 0.001 0.001 0.001 0.0021
ACFR - User8 (+)(Ψ8C4<) 0.001 0.001 0.006 0.001 0.001 0.001

Table 6. The ?-value results of Tukey’s HSD (U ′ = 0.05).

On the other hand, in the Toys and Games and Beauty datasets, we observe a harmonious relation where users
or items positively affecting fairness also enhance accuracy. This underscores the fact that the trade-off between
fairness and accuracy, while prevalent, is not a steadfast rule and can be dataset-specific. This finding paves the
way for a more intricate understanding and strategic handling of the balance between fairness and accuracy in
recommendation systems.

5.5.7 Determining the Significance of Differences in Fairness: Tukey’s HSD. The relative effectiveness of the
proposed ACFR and the baselines in terms of fairness is examined through the application of Tukey’s Honest
Significant Differences (HSD) [1].The corresponding ?-values are laid out in table 6.ACFR is deemed to outperform
the baselines significantly if the resulting ?-value falls below 0.05 (U ′ = 0.05) with respect to recommendation
fairness.

5.6 Analysis on Interactions of Selected Users
To shed light on why selected users and items play a crucial role in recommendation fairness, we analyze the
relationship between the distribution of interactions of selected users/items and their ES. Due to the page limit,
we only show the investigation results of explanations in terms of user fairness by methods selecting users.
We first plot the standard deviation of the selected users’ interactions against their ES generated in terms of
user fairness on the Beauty dataset (fig. 1a). Different colors represent different methods for selecting users
to explain fairness among individual users. The results in fig. 1a show that while the standard deviation of
interactions is similar for red dots (ACFR - UserD (−)) and green dots (ACFR - UserD (+)), the ES of green dots is
significantly larger than that of red dots. Blue dots (Active-users) have a unique distribution, while pink dots
(Inactive-users) have a distribution similar to red dots and green dots. Since the red dots, pink dots and green
dots show similar standard deviation in fig. 1a, we further examine the relationship between the ES of selected
users and the euclidean distance between their interactions and the average user (who is denoted by the average
of all items’ interactions from all users). The results in fig. 1b show that the interactions of users selected by
ACFR - UserD (+) (green dots) are different from most users, while red dots and pink dots have a relatively smaller
distance from the average. This highlights the significant difference between users selected by ACFR - UserD (+)
and ACFR - UserD (−) despite their similar interaction distributions.

To understand why pink dots have a higher ES than red dots despite having a similar standard deviation (fig. 1a)
and distance from the average (fig. 1b), we calculate the mean squared error between r̃ and ˆ̃r for each selected
user (as defined in eq. (7)). This is to determine which users can provide more information to the pre-trained
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Fig. 1. Analysis on interactions of selected users on the Beauty dataset.

Method Rand-U Rand-I Act-U Inact-U Act-I Inact-I ACFR - UserD (+)
User Unfairness (N=10)

DeepFM 1.191 1.166 1.254 1.179 1.200 1.187 1.149
FwFM 1.200 1.166 1.245 1.180 1.201 1.190 1.148
FNN 1.175 1.195 1.250 1.181 1.209 1.200 1.150

Table 7. Effect of different imputation in Toys and Games.

model G. The larger the error, the more different information is introduced by the interactions of the selected
user, and the more likely the user will impact fairness (improve fairness by eq. (8)). We display the error as the
size of dots in fig. 1a and fig. 1b, with larger dots indicating larger errors. In both figures, pink dots and green
dots have relatively larger errors, which suggests that larger errors have a larger impact on fairness. This can also
explain why pink dots have a higher ES than red dots even they have the similar standard deviation and distance
from the average. Note that the interactions analyzed in this investigation comprise both historical and imputed
ones, including the calculation of the average of all items’ interactions.

5.7 Analysis on Different Imputation
In order to thoroughly assess the performance of the proposed system when using different imputation models,
we conducted an evaluation that included two additional recommendation models, FwFM [41] and FNN [75],
which were represented as G. By comparing these models, we aimed to gain a better understanding of how the
proposed ACFR operates in relation to other approaches within the field. The user unfairness results for both the
baselines and the proposed ACFR are presented in table 7. Upon analyzing the data provided in table 7, it becomes
evident that the proposed ACFR consistently outperforms the baselines, regardless of the specific imputation
models employed. This observation is highly significant, as it suggests that the proposed ACFR is not sensitive to
the imputed interactions. Consequently, we can infer that the ACFR is highly adaptable and versatile.
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Fig. 2. The positive and negative effects of users and items on fairness in the Beauty dataset.

5.8 Positive and Negative Impact on Fairness
We evaluated the influence of certain users and items on fairness in the recommendation model G using
ACFR - UserD and ACFR - Item8 on the Beauty dataset. We calculated explanation scores for each user and item,
ranked them in descending order, and grouped them into bins of 10. The bin on the far left of the x-axis represents
users or items with the highest ES, while the bin on the far right represents users or items with the lowest ES.
The blue line represents the performance of user or item unfairness after retraining with imputed interactions for
users or items in each bin. The red dashed line shows the performance of the original recommendation model
G in terms of user or item unfairness. The results showed that users starting from the bin immediately to the
right of the 115th bin negatively impacted user fairness (as shown in fig. 2a), while users in the bins to the left of
the 115th bin had a positive impact. Similarly, items in bins to the left of the 30th bin positively impacted item
fairness (as shown in fig. 2b), while items in bins to the right of the 30th bin had a negative impact. In conclusion,
the proposed ACFR is capable of identifying not just users and items that improve fairness, but also those that
negatively impact it.

5.9 More Recent Dataset
In this section, we assess the ACFR framework’s performance using the MovieLens 25M dataset to demonstrate its
applicability to more contemporary datasets. Due to the large size of users (162,000) and items (62,000), without
loss of generality, we randomly selected a subset of 2,000 users and 2,000 items for our experiment. Furthermore,
to examine their influence on user fairness (Initial User Unfairness of G: 1.606), we run three separate checks
by randomly selecting 150 items three times. The outcomes of these analyses are depicted in fig. 3. The x-axis
in fig. 3 categorizes the items into bins, with each bin containing 10 items. These items are sorted according to
their Explanation Scores (�(), with ‘1’ on the x-axis indicating the top 10 items, ‘6’ indicating the top 60, and so
forth. The leftmost graph in fig. 3 demonstrates that nearly all selected items positively impact user fairness, as
indicated by the consistent decrease in user unfairness with the addition of more items. Conversely, the middle
and right graphs reveal that the selected items exhibit both positive and negative effects on user fairness.

5.10 Decision Tree Structure
In this section, we employ decision trees to illuminate the influence different categories of users and items exert
on the fairness of our recommendations, as shown in fig. 4 and fig. 5. We draw on data from the MovieLens 100k
dataset to construct these decision trees.
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Fig. 3. The effects of selected items on user fairness in the MovieLens 25M dataset.

Methods RMSE User Unfairness

N=10 N=20 N=30 N=10 N=20 N=30

The Model G 0.959 1.280
ACFR - UserD (−)Δl̃− 0.955 0.953 0.952 1.263 1.265 1.257
ACFR - UserD (−) 0.956 0.955 0.954 1.269 1.275 1.272
ACFR - UserD (+)Δl̃− 0.939 0.939 0.939 1.152 1.150 1.149
ACFR - UserD (+) 0.939 0.939 0.939 1.149 1.148 1.147

Table 8. Results of ablation analysis on the performance of RMSE and user fairness on Toys and Games dataset. The best
results are bold-faced.

On the user side, we discovered, for instance, that users with the occupation of ‘Scientist’ have the highest
average �( of 96.97, indicating a significant impact on user fairness. At the other end, ‘Female Students’ demon-
strate the lowest average �( of 19.49, implying a lesser impact. Similarly, we uncovered that certain genres of
movies tend to influence item fairness either positively or negatively.

Practically speaking, these insights can be instrumental in multiple ways. For instance, recommender systems
could prioritize users or items identified as potentially causing fairness discrepancies for fairness improvement
interventions. Alternatively, these decision trees can guide the design of new recommendation algorithms that
inherently mitigate unfairness based on user or item categories. In summary, the understanding gleaned from
this analysis can be an invaluable resource in shaping strategies to enhance recommendation fairness.

5.11 Ablation Analysis
We conducted an ablation analysis to determine if it is necessary to minimize the changes in l̃ of G while
optimizing the counterfactual optimization problem (as defined in eq. (8)). We tested a different setting for
ACFR - UserD , referred to as ACFR - UserΔl̃−

D , which represents removing the second term | |Δl̃ | |22 in eq. (8). The
results in table 8 show that ACFR - UserD (+) performs better than ACFR - UserD (+)Δl̃− in terms of user fairness,
while ACFR - UserD (−) has higher user unfairness than ACFR - UserD (−)Δl̃− , indicating that the term | |Δl̃ | |22 is
important in determining the amount of effort a user needs to make to improve fairness.
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Fig. 4. The relationship between user profiles and ES produced by ACFR - UserD on the MovieLens dataset.
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Fig. 5. The relationship between item profiles and fairness impact on the MovieLens dataset.

5.12 Erasing-based Counterfactual Analysis
In our research, we also employed an erasing-based counterfactual analysis strategy. This approach involved the
removal of current interactions of specific users/items rather than the addition of unknown interactions, the
latter being a characteristic of the adding-based method utilized in ACFR. The erasing-based method is comprised
of the following procedures:

(1) training the recommendation model G following eq. (4).
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Fig. 6. The relationship between user unfairness and ES generated on the Toys and Games dataset.

(2) for each user, minimizing the objective function as defined in eq. (8)). Unlike the adding-based method
discussed in section 4.2 where all weights of model G are affected, this method only updates the weights
related to the current user, those users who have interactions with the same items of the current user, and
items interacted with by the current user.

(3) calculating the ES for the erased user following section 4.3.

The outcomes, as depicted in fig. 6a and fig. 6b, demonstrate the relationship between user unfairness and the
corresponding ES of said user. For clarity, in fig. 6a and fig. 6b, each dot represents a single, unique user. The
G-axis corresponds to the ES of the user, and the ~-axis denotes user unfairness, thereby indicating the shift in
fairness after either eliminating the specific user’s interactions or adding imputed interactions for this user. This
graphic illustration allows us to understand how modifications to each user’s interactions can influence the total
fairness of the recommender system.

The expectation in fig. 6a was that the value of user unfairness would be lower when removing users with
higher ES, but no clear trend can be observed. In contrast, the trend is clear in fig. 6b, which indicates the
relationship between the user unfairness that is based on predictions produced by pre-trained G after imputing
missing interactions of each user and the corresponding ES of the user generated by ACFR - User. This suggests
that the erasing-based method does not produce meaningful explanations, while the adding-based method does.

6 DISCUSSION
This research was undertaken with the goal of advancing our understanding of fairness in recommender systems.
With a keen focus on individual user-item interactions, we delved deep into exploring how fairness manifests at
this granular level and what it implies for the overall integrity of a recommender system.

In the realm of fairness and explainability in recommendations, our work threads a nuanced path, filling gaps
that have hitherto been overlooked. While the existing literature offers methodologies to ensure fairness in
recommendations and explainability for such recommendations, few have embarked on the journey of explaining
the fairness of these recommendations themselves. This dichotomy is what our research bridges. Several seminal
works, like those of [9] and [18], ventured into explaining the root causes of unfairness. Yet, these explanations
were often couched in terms of features and lacked the user-item interaction perspective. Our emphasis on
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individual interactions as the foundation of recommender systems is thus a significant departure from the
established paradigms.

Upon examining the recent perspectives paper by Sun [58], we observed intriguing parallels between our
vision for improved explanation systems and his call for refinement in the evaluation domain. Sun stresses the
need for more nuanced evaluation methodologies in information retrieval, emphasizing the importance of context,
user behavior, and long-term impact. These aspects resonate with our own perspective of diving deep into the
granularity of individual user-item interactions and examining fairness from this lens. It’s imperative to note
that while Sun’s work centers on a broader call for comprehensive evaluation frameworks, our research delves
into the specifics of fairness explanations within recommender systems. However, the shared ethos of a deeper,
more contextual understanding underpins both. Our work can be seen as a practical realization of some of the
tenets Sun proposes, albeit in a more focused domain. As recommender systems evolve and adapt, it’s plausible
that the fairness explanations we propound become integral to the advanced evaluation methodologies that Sun
envisions.

7 CONCLUSION
In the intricate world of recommender systems, fairness has become a crucial focal point. This study embarked
on an ambitious journey to navigate this complex terrain, addressing four pivotal research questions.

Our first inquiry revolved around understanding the role of individual user-item interactions in shaping, and
at times distorting, the fairness of recommender systems. Through our research, we found that these granular
interactions can significantly influence the overall perception of fairness, often amplifying biases inherent in the
system, a finding that emphasizes the importance of treating each user and item as unique entities.

In answering the second research question, we delved into creating a methodological framework that prioritizes
these individual user-item interactions. Our objective was to unearth the underlying sources of unfairness. By
meticulously dissecting these interactions, we provided deeper insights into where biases may originate and how
they proliferate within the system.

For our third research question, we introduced the Adding-based Counterfactual Fairness Reasoning (ACFR)
and elucidated its advantages over traditional fairness methodologies. Notably, ACFR transcends conventional
approaches by imputing unknown interactions, adeptly navigating around the ’no gradients’ issue often encoun-
tered during training. This nuanced approach not only bolsters the robustness of the model but significantly
enhances its clarity and interpretability.

Lastly, our fourth inquiry aimed at assessing the empirical strength of the ACFR approach. Our findings
demonstrate that ACFR offers a more compelling narrative in explaining recommendation fairness, outperforming
existing methods in both precision and depth of explanation.

To conclude, this work shines an analytical spotlight on recommendation fairness, offering a fresh perspective
through the lens of ACFR. By addressing the unique challenges presented by user-item interactions and proffering
an innovative methodology, we aim to pave the way for more equitable and transparent recommender systems in
the future.
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