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This paper investigates the Cyber-Physical behavior of users in a large indoor shopping mall by leveraging
anonymized (opt in) Wi-Fi association and browsing logs recorded by the mall operators. Our analysis shows
that many users exhibit a high correlation between their cyber activities and their physical context. To find this
correlation, we propose a mechanism to semantically label a physical space with rich categorical information
from DBPedia concepts and compute a contextual similarity that represents a user’s activities with the mall
context. We demonstrate the application of cyber-physical contextual similarity in two situations: user visit
intent classification and future location prediction. The experimental results demonstrate that exploitation of
contextual similarity significantly improves the accuracy of such applications.
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1 INTRODUCTION
Knowledge about consumer behavior is critical for retailers to make personalized recommendations
in targeted marketing, improving services, or conduct location prediction. The operators of large
indoor shoppingmalls wish to better understand consumer’s behaviors to compete with online retail.
Currently, physical retailers primarily gather customer insights by analyzing point-of-sale data.
The path a customer took when visiting a mall, how much time they spent at a particular location,
or whether they looked for a specific item is information that is typically not available. In contrast,
online retailers benefit from rich information about customer activities, including knowledge ofWeb
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interaction such as page visits and dwell times. Combined with sales information, such data provides
actionable insights that can help retailers improve the online shopping experience of customers. The
activities inferred from the data can be exploited to recognize user intent during online shopping.
Such an understanding has not been previously explored in physical retail environments.
Malls, museums, galleries, and transport hubs are large heterogeneous environments offering

a range of different services: retail, entertainment, information, catering, etc. Increasingly, Wi-Fi
networks and Bluetooth© beacons are being introduced into these spaces allowing the logging
of movement and information behavior of visitors to such environments. Coupled with an un-
derstanding of the functions of the different locations in a space (i.e. physical contexts) one can
ground and classify user behaviors or predict future movements. Such an understanding allows the
creation and eventual delivery of improved services to visitors.
A person’s behavior within a physical space is represented by heterogeneous data, both cyber

and physical. In the context of our study, the cyber domain captures a user’s interest in the form of
queries issued. The physical, associations with Wi-Fi Access Points (APs), captures information
related to an area of interest to the user. We hypothesize that users with contextual intent exhibit
similarity between their physical contexts and their cyber behavior, i.e. users issue queries related
to the context of the physical space. Their cyber-physical behavior reflects what they are interested
in.
To illustrate: consider user 𝐴 who intends to buy a laptop and compares products online while

in the vicinity of a computer store; user 𝐵, who enters the mall searching for a particular store and
follows a trajectory that ends in the store’s vicinity; and user 𝐶 , who checks an online footwear
size chart while in a store selling shoes. User 𝐴 is interested in computers, user 𝐵 is interested in a
specific store, and user 𝐶 is interested in footwear. Such interests can be inferred from the physical
context and the combined cyber and physical activity of users.
We present an approach to formulate a correlation between user physical and cyber behavior

from heterogeneous data i.e. the Web Query Logs (Cyber) and the Wi-Fi AP association logs
(Physical) in order to identify users’ interests specific to the physical location. There are number of
challenges.

(1) The Semantic Labeling of a physical space. In a mall, this can be done by assigning the
category of shops (e.g. Cosmetics, Footwear, Clothing etc) that are in the range of an AP.
However, these categories are broad and may not correlate well with a user query.

(2) Therefore, we employ Semantic Category Expansion to expand the categories to cover the
range of sub categories and products.

(3) To discover the semantic similarity between queries and a physical space we also create a
Contextual Similarity to map a user query to the representation of categories and relevant
sub-categories.

The cyber physical contextual similarity shows the users’ interests across different semantic
categories related to the physical environment and can be used in various applications that involves
understanding of user behavior. In our work, we show the use of cyber-physical similarity features
in two different applications: Classification of User Visiting Intent and Future Location Prediction.
We hypothesize that contextual similarity is a strong indicator of what a user is interested in. It can
be helpful in identifying whether a user exhibits high contextual intent with the physical space or
is just browsing the area; and, which places the user will visit next.
For behavior classification, the aim is to identify shoppers with high contextual intent, such as

users𝐴, 𝐵, and𝐶 . There are many visitors to a mall for whom their Web behavior and indoor context
are contextually intentless. Consider user 𝐷 , who visits a mall searching the Web for information
about a particular festival occurring in the city, and interleaving these searches with queries about
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“lost luggage” and “baggage claim”. This user is likely a tourist more focused on the free Wi-Fi than
the primary services provided by the mall. While such users clearly have an intent, from the point
of view of the mall operator, their visit can be classed as intentless. We also place in this category
‘window shoppers’, or shoppers with a high-level shopping intent (e.g., ‘I need to get a present for
my brother’) that cannot be tied to a particular retailer or category of retailers. While all visitors
are potentially of great interest to indoor retailers, we focus our work on detecting contextually
intentful customers.
Previous intent recognition relied on examining either physical behavior from Wi-Fi signals,

mobile phone sensors, mobile proximity sensors [17, 34, 36], or exploiting cyber behavior from
online Web browsing and searching logs [19]. To the best of our knowledge, this is the first time a
user’s contextual intent in an indoor space is inferred from both physical and cyber behavior.

We also employed user’s cyber-physical semantic similarity for future location prediction. Past
work [20] studied the effect of different features on such prediction exploiting Location Based Social
Network data. The researchers reported that category of location visited by a user has high impact
on prediction accuracy. However, the same is not studied for an indoor setup where movements of
a user are captured by Wi-Fi traces. Therefore, we experimented to see if a user’s future locations
can be predicted accurately by using the semantics of indoor locations visited by the user and query
context.

The main contributions of this work are:

• Semantic Categorization used to semantically label a physical space and find the correlation
between open text queries and physical semantics;

• A Cyber-Physical Contextual Similarity model, used to extract contextual features, including
Physical and Cyber activities captured by Wi-Fi AP associations and Web Query logs;

• A shopping intent recognition system for user intent recognition, used to classify two broad
categories: intentful or intentless.

• An evaluation on the effect of Semantic Context on Future Location Prediction.

2 BACKGROUND
We categorize our description of past work into five areas. As mentioned earlier, our main goal
is to find cyber-physical semantic similarity from user’s cyber behavior captured by Web logs
and physical context represented by semantic categories. We then show the application of this
similarity in two different applications, User behavior classification and Future Location Prediction.

Semantic Labeling of Contexts: Context is an influential factor in analyzing both human
behaviors [21] and user intent from mobile information access [5]. Context is defined as ’any
information that can be used to characterize the situation of an entity, where an entity can be a
person, place, or physical or computational object.’ [1]. Semantic labelling of a location context is
an important step to identify intent. Krumm and Rouhana proposed Placer, which treats semantic
labelling as a classification problem based on time, user demographics, and nearby businesses [14].
They found that the demographic information and nearby businesses was helpful in semantic
labelling of places, e.g. school, home, and work. Later, they proposed an advanced version, called
Placer++, which utilizes two more features, the labelled visitors from others and the visit sequences,
and found higher accuracy was achieved with these two new features [15]. Elhamshary et. al.
proposed CheckInside, a fine-grained indoor location-based social network, which utilized check-in
data collected from crowd source workers to associate a location with its name and semantic
fingerprint. The researchers claimed CheckInside provides more accurate localization and better
coverage [8].

, Vol. 1, No. 1, Article . Publication date: February 2018.



4 Manpreet Kaur et al.

Indoor Behavior Analysis: To support real-world, mobile-centric behavioral research, Misra
and Balan presented LiveLabs, which is a large-scale mobile testbed for in-situ experimentation [18].
They also investigated user behaviors when considering whether users are in a group or alone.
The researchers found people’s mobility patterns, app usage, and propensity to communicate over
phones are significantly different across these two scenarios [12]. Martella et. al. [17] studied the
relationship between indoor visitors and the objects in the case of museum exhibition. Specifically,
they deployed energy-efficient mobile proximity sensors to measure the face-to-face proximity
between people and objects, and achieved high accuracy of identifying which exhibit a user is
facing at short distance [17].

Shopping Behavior Recognition: Zeng et. al. [36] studied how to determine a shopper’s
physical behaviors based on channel state information of Wi-Fi signals. They focused on behaviors
near shop entrances or within a store, The researchers found the channel information of Wi-Fi
signals were a good source to classify these different physical behaviors [36]. Radhakrishnan et.
al. presented how to use a smartphone and a smartwatch to segment fine-grained user shopping
behaviors: e.g. putting an item in the cart [22]. Ren et. al. analyzed how people use Wi-Fi to access
the Web in indoor retail spaces while navigating through a mall. They found temporal patterns in
shoppers’ visits and determined that physical context influences user’s cyber behaviour [28]. Based
on these findings, Ren et. al. developed a tripartite location-query-browse graph for contextual
recommendations of query, Web content and location, inferred from searching, accessing, and
moving behaviors [26]. Using only such behaviours inferred from Wi-Fi logs, Ren et. al. also found
strong correlations between behaviours and user demography (e.g. age, gender, income, parental
status, visitor types) [27]. The work in this paper will build on the contributions from the previous
works by Ren et al. [24, 26–28] and extends on our previous work on modelling cyber-physical
contextual similarity [13].

User Intent Recognition: Jansen et. al. studied the user intent of Web queries focusing on
determining the informational, navigational, and transactional intents [11]. Other work investigated
intent based on diary studies by focusing on user mobile information needs [5]. The researchers
suggested two additional intents: geographical and personal information management. Chuang-
Wen You et. al. proposed a phone-based system to monitor shopping time in stores classifying
user trajectories as either shopping or non-shopping. The researchers utilized spatial and temporal
features extracted from bothWi-Fi signals and the accelerometer and digital compass of a phone [35].
Duan and Zhai studied the intent representation problem in the field of entity search, e.g. product
retrieval. They proposed a coordinated intent representation by linking the query and entity space
collectively. The researcher’s focus was on utilizing query terms and product attributes [7]. Little
research reveals whether shopping intent is detectable in user movement (physical) and query
(cyber) behaviors.

Location Prediction: Exploiting user check-in data from location based social networks to
predict/future check-in locations is a well studied topic [20]. Features used included information
on types of places, mobility flows between venues, and spatio-temporal characteristics of user
check-in patterns. The work proposed a supervised prediction model, based on linear regression
and an M5 model tree. Another study predicted locations, stay duration, and contact from Wi-Fi
and Bluetooth traces [32]. For location prediction, the authors use Wi-Fi traces and cluster AP
information by exploiting regularity of movement. The study was based on traces collected from
fifty participants. The former study used the characteristics of venues in terms of categories, the
latter did not. Recent work that introduced continuous trajectory prediction problem [30] also
presented a solution based on information-gain to segment multivariate temporal sensor data [29].
The study focused on predicting the continuation of user movements, i.e. trajectories, including
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the sequence of location and departure times for the remainder of the day. Also introduced were
two types of trajectories: geographical and labelled.

Check-in prediction: Noulas et. al. [20] analyzed various features from user social network
check-in data and found that the types of places users tend to visit (cinema, nightclub, coffee shops
etc.) can be highly informative about user mobility preferences. In Location Based Social Networks,
venues that user checks in to are labeled with well defined categories, which is not the case with
the physical location. Users’ physical movements are captured by Wi-Fi AP connections. A location
prediction model using Wi-Fi traces was presented in [32]. We hypothesize that Physical Context
(i.e.semantic categories assigned to Wi-Fi APs in a physical location) and Cyber Context (i.e user
queries context in an indoor space such as shopping centers or museums) can further enhance
prediction results as found in studies on check-ins prediction.

Gaps addressed by this research: In our study, we use trajectories, location traces from Wi-Fi
APs, labelled with semantic categories of the surroundings. Context information from a user’s web
query logs can be used to predict future locations. Our evaluation results in successful prediction
of less popular locations with higher accuracy then using a model entirely based on mobility flows
between locations.

3 OVERVIEW AND DATASET CHARACTERISTICS
3.1 Research questions
Given users’ cyber activities (in terms of web query logs in this instance) and physical context (in
terms of shop categories), 1) can we enhance the Physical Context to determine the correlation
between user’s Cyber-Physical context; 2) how this context can be helpful in applications that
involves understanding of user behavior or interests such as for user intent classification and future
location prediction?

Our goal is to determine if there is correlation between user cyber physical behavior and context
in a shopping mall. We focus on user behavior classification (i.e., shopping intent recognition) and
future location prediction. We build a model to classify a user trajectory into two broad categories,
intentful and intentless, then we study the effect of semantic or contextual intent on future location
prediction.

3.2 Data Acquisition
We study an anonymized dataset of Internet access, that was captured by an opt-in, free Wi-Fi
network in a large inner-city shopping mall in Sydney, Australia. The dataset has a Wi-Fi AP
Association Log (AL) and a web Query Log (QL), collected between September 2012 and October
2013. The APs (around 70) are in the hallway spaces of the mall spread over six levels. The mall
contains over 200 stores spanning 29 shop categories, which are defined by the mall operator, Table
1. The locations of the stores and the APs are documented in 2D floorplans.

The AL contains 1) the association AP ID; 2) the start timestamp of the association; 3) the
association duration; 4) the data volume received/sent in this association; and 5) an encrypted
persistent user device ID. The QL contains 1) the query issued by user; 2) the association AP ID at
which the query was issued; and 3) the encrypted persistent user device ID. The encrypted ID was
a hash key based on user registration details and the Wi-Fi MAC address of the device.

3.3 Query Processing
The queries were grouped into high level categories using the Bright Cloud service (brightcloud.com)
to categorize query-click destinations [25]. Over 68 categories were found, the distribution of top
ten is shown in Figure 1. The most popular was Travel, perhaps because the shopping mall is in
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Table 1. Mall Operator Defined Categories

Bakeries Cafe Cosmetics
Costume Jewellery Delicatessen Discount Cosmetics
Fashion Accessories Fine Jewellery General Footwear
Gifts/Souvenirs Groceries Gymnasiums
Hair & Beauty Home Decor Men’s Fashion
Mobile Phones & Accessories Music/Videos/DVDs Newsagent/Stationery
Pad Sites Repairs & Maintenance Restaurant
Small/Major Appliances Sport Takeaway
Travel Unisex Fashion Watches
Women’s Fashion Women’s Footwear

Fig. 1. Top 10 Indoor Search Categories

the center of a popular tourist city. Travelers might be using the free internet. We focus on the
shopping category, around 8% of queries.

3.4 AP Association
User movements are captured by AP associations. The associations capture user visits to stores
and their passing by a particular location. In order to distinguish between the two we generate
a Cumulative Distribution Function (CDF), shown in Figure 2. The AL has a sampling rate of 5
minutes. The CDF shows around 30% of the associations are found to be < 10 minutes. Therefore,
we only considered a user’s association with an AP if the association duration exceeded 10 minutes
(two sampling intervals).

3.5 Web Content-AP Correlation
We first extracted semantics labels of the shops (physical context) in the mall from crowdsourced
applications including Foursquare, Yelp, and Google places, as shown in Figure 3.
For each visit of a user, we extracted a trajectory of visited APs. We then analyzed logs by

extracting the top user trajectory sessions, as explained in Section 3.2. Next, we constructed a
sequence of cyber-physical query term sequences that relate the change in information needs
with the change in physical context. Figure 4 shows an example of such a trajectory. The intent
of the user is first exploring an online footwear size chart when they are close to a shoe store
and the category of interest for the user is Footwear. This contextual intent can also be used for
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Fig. 2. CDF for AP association

Fig. 3. Shopping Center Semantics Word Cloud

future location prediction where the results can be filtered based on the user interest as reflected in
queries.

Thus, we hypothesize that an individual’s intent could be constructed by linking their physical
behavior (trajectory in terms of shop keywords) and cyber behavior. The challenge is to automati-
cally link the query with the physical context. Intentful query text can contain terms that do not
map to currently captured categories. Hence, we propose a Context Categorization System (CCS)
explained next.

4 CYBER-PHYSICAL SEMANTIC CATEGORIZATION AND CONTEXTUAL
SIMILARITY

We define the following:
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Fig. 4. Example of a user search query in co-relation with physical context.

Definition 4.1. Physical Context is the area of the mall served by the APs, and characterized by
the Semantic Categories of Table 2.

Definition 4.2. Cyber Context is a document of entities/categories extracted from users’ queries
issued in a single visit to the shopping mall.

In order to identify user intentions, we need to find if their physical trajectories and cyber
activities correlate with the physical surroundings. The main challenge is to map open text queries
to a small set of category terms that have little or no lexical similarity with each other. For example,
a user query may be product name or brand (e.g. Mascara and Ugg Shoes) which are not in the
mall-defined shop category list.
Hence, we propose a system that uses structured information to find intent signals from user

queries with respect to physical context, by extending the text of both queries and categories. We
gather additional information from DBPedia concepts [2], extracting categories related to each
concept. The extended content representations are then compared.
We first describe preliminaries, then approach the first task i.e Modelling Physical Space using

extended categorical information as an Enrichment of Semantic Categories problem. The second
task, query extension, we consider it as an Entity Search problem where given a query we try to
identify Wikipedia concepts from query text and generate a document of categories related to each
entity identified.At last in Section 4.4, we compare category document generated in Step 2 with
each category document in step 1 to generate a vector of similarities to physical context signaling
user interests.

4.1 Preliminaries
We define some terms. Documents are collections of semantic categories. Terms (e.g. shoes, boots)
are nouns extracted from queries in the QL. Entities are known concepts or resources in DBPedia,
which could include specific brand names. Semantic categorization is the method to extract semantic
categories (and the related sub-categories) to represent the physical and query space. In our work
we used two mechanisms to access data from DBPedia: Linked Data and SPARQL. The details of
the system are described next.
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Here, we describe Semantic Web that we used to do Semantic Category Expansion and finding
Cyber Physical Contextual Similarity in section 4.1.1 followed by DBPedia in section 4.1.2. Then,
we show how to access DBPedia in section 4.1.2.

4.1.1 Semantic Web. The web has evolved from dumping raw data such as CSV or XML, or HTML
tables, sacrificing structure and semantics to linking both documents and the data together so
that a person or a machine can explore the web of data. The adoption of linking the data on
the web has connected data from diverse domains such as people, companies, books, scientific
publications, films, music, television and radio programmes, genes, proteins, drugs and clinical
trials, online communities, statistical and scientific data,and reviews enabling users to come up with
new applications. The concept of linked data was proposed by [4] and was achieved by using three
descriptive techniques:Resource Description Framework (RDF), Web Ontology Language(OWL)
and Extensible Markup Language (XML). RDF is a data model that defines the structure and
semantics of metadata on the web. It is similar to classical modeling approaches such as entity-
relationship or class diagrams, as it structures information about resources in the form of a Triple
(subject-predicate-object) expressions. For example:

Subject(Wikipedia page) : ℎ𝑡𝑡𝑝𝑠 : //𝑒𝑛.𝑤𝑖𝑘𝑖𝑝𝑒𝑑𝑖𝑎.𝑜𝑟𝑔/𝑤𝑖𝑘𝑖/𝐴𝑑𝑖𝑑𝑎𝑠 of
Predicate(Element) : ℎ𝑡𝑡𝑝 : //𝑝𝑢𝑟𝑙 .𝑜𝑟𝑔/𝑑𝑐/𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠/1.1/𝑑𝑐𝑡 : 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡
Object(Category) : ℎ𝑡𝑡𝑝𝑠 : //𝑒𝑛.𝑤𝑖𝑘𝑖𝑝𝑒𝑑𝑖𝑎.𝑜𝑟𝑔/𝑤𝑖𝑘𝑖/𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 : 𝑆𝑝𝑜𝑟𝑡𝑠𝑤𝑒𝑎𝑟_𝑏𝑟𝑎𝑛𝑑𝑠 can be

represented in RDF/XML as follows

<?xml version= " 1 . 0 " ?>
< rd f :RDF xm l n s : r d f = " h t t p : / /www. w3 . org / 1 999 / 02 / 2 2 − rd f −syntax −ns # "
xmlns : d c = " h t t p : / / pu r l . org / dc / e l emen t s / 1 . 1 / "
xm ln s : ex t e rms= " h t t p : / /www. example . org / terms / " >
< r d f : D e s c r i p t i o n r d f : a b o u t = " h t t p : / / dbped ia . org / r e s ou r c e / Adidas " >
< d c t : s u b j e c t r d f : r e s o u r c e =
" h t t p : / / dbped ia . org / r e s ou r c e / Ca t e go ry : Spo r t swea r _b r and s " / >
< / r d f : D e s c r i p t i o n >
< / rd f :RDF>

The RDF information is structured in xml using RDFS (RDF Schema). In the given example
rdf:Description, rdf:about, rdf:resource are parts of RDFS and are standardized following Web
Ontology Language(OWL) standards.

OWL is a language for knowledge representation, a formal way to describe networks and there
relationships, where nouns represent objects and the verbs represent relations for example RDFS.
This standard representation is followed across all domains and helps to cross link information.

One such example of Semantic Web application is DBpedia that makes the content of Wikipedia
available in RDF as explained in next Section.

4.1.2 DBpedia. DBpedia, [2], is a project developed on the grounds of Linked Data or SemanticWeb
that acts as an information extraction framework for Wikipedia. Wikipedia articles is a collection
of free text along with structured information in the form of wiki markup. Such information
includes categorisation, images, geo-coordinates, links to external Web pages, disambiguation
pages, redirects between pages, and links across different language editions of Wikipedia. DBpedia
extracts this structured information from Wikipedia and turns it into a rich information extraction
framework representing wiki articles in the form of RDF. The current DBPedia knowledge base as
reported by [2] describes more than 2.6 million entities, including 198,000 persons, 328,000 places,
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(a) (b)

Fig. 5. http://dbpedia.org/page/Adidas viewed in a web browser

(a) SampleQuery (b) Response

Fig. 6. SPARQL DBpedia endpoint

101,000 musical works, 34,000 films, and 20,000 companies in the form of 103 million RDF triples
that can be used for variety of Semantic Web applications.

Accessing DBPedia Dataset. DBPedia provides three access mechanisms to its dataset: Linked Data,
the SPARQL protocol, and downloadable RDF dumps under GNU Free Documentation License.

Linked Data is a method of publishing RDF data on the Web that relies on http:// URIs as resource
identifiers and the HTTP protocol to retrieve resource descriptions. The URIs return meaningful
information about the resource in the form of RDF description. Such a description usually mentions
related resources by URI, which in turn can be accessed to yield their descriptions. These URI can
be accessed either via web browser as shown in Figures 5a,5b or using REST api
SPARQL is a semantic query language that enables to extract and manipulate data stored in

Resource Description Framework (RDF) format. Figure 6a shows the SPARQL endpoint with the
sample query issued to retrieve dct:subject for URI http://dbpedia.org/resource/Adidas and 6b the
response for query issues listing URI’s for all the subjects linked to Adidas wiki page.
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Table 2. Semantic Categories. The number in the brackets denotes the number of sub-category terms, product
names, and related terms.

Bags (104) Bakeries (48) Clothing (183)
Coffee (74) Consumer Electronics (381) Cosmetics (173)
Decor (188) Fashion (292) Fashion Accessories (203)
Food Retail (91) Footwear (94) Home Appliances (174)
Jewellery (153) Mobile Phones (229) Restaurants (127)
Retail (214) Sports (141) Watches (123)

The last mechanism for accessing data from DBPedia is RDF dumps that are available for
download at the DBpedia website and can be used directly.

4.2 Physical Context
The semantics of the physical space can be defined as shop categories, as shown in Table 1. However,
the categories are too broad for the purposes of user shopping intent recognition. Specifically, this
study aims to find the correlation between user query with the physical semantics in order to
discover the intent of the user. User queries can contain a broad set of terms that can be related
to these categories. It is feasible to correlate the user query terms with these categories only
using a rich corpus of terms, categories and products that represents shopping center context.
To generate a corpus that contains a larger range of terms related to shopping context, we use
structured information from Wikipedia. Information on Wikipedia is organized by categories and
each category has further subcategories forming a tree like structures for the aid of navigation. We
exploit this categorical information to enhance semantics and generate a rich corpus of categories.
Our hypothesis is, user queries to some extent can be related to Wikipedia categories in order to
get an understanding of query intent. Some brand or product-related information is not covered
by Wikipedia categories,but most well-known brands and products are covered that are then
categorized using relevant Wikipedia categories. We manually map each semantic category to one
of 18 DBPedia categories. We then input each category to our content categorization system, which
iterates through sub-categories using a depth-first search of up to 𝜆 levels. We create a document
of the iterated categories/sub-categories. Manual tuning led us to set 𝜆 = 5 which we found to be
an optimal balance between noise and signal. The collection of 18 documents is detailed in Table 2.

It is necessary to label each AP with the semantics corresponding to its location in the mall. The
physical area of the mall covered by an AP is approximated by a Voronoi cell, in which any location
is closest to its seed location (the AP) than to any other seed location (other APs) [3], see Figure 7a.
We manually rectified the cells to match shop frontages and thus better represent physical contexts,
see Figure 7b [28]. On average, there are 3.67 shops in each rectified cell. The semantic categories
of an AP correspond to the categories of each shop in the AP’s cell.

4.3 Cyber Context
Given a query, CCS extracts entities and then gathers contextual DBPedia categories for each entity.
The CCS system is shown in Figure 8a. We describe the components with an example query: “The
Face Shop clear mascara review". Note, the process of query categorization is quite similar to [16]
For entity extraction we use Targeted Hypernym Discovery [6], an unsupervised entity dis-

covery and classification system. The system discovered two entities from our example query:
The Face Shop and Mascara. We then use Graph explorer, which takes a list of entities and looks
for resources connected to it via the Simple Knowledge Organization System (SKOS) properties
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(a) Theoretical Voronoi cells (b) Rectified Voronoi cells

Fig. 7. AP coverage regions using Voronoi Cells

(a) Architecture (b) Example

Fig. 8. Content Categorization System

skos:subject and skos:broader. The algorithm iterates through each entity and performs a depth
first search on the DBPedia graph. The subject is retrieved only for the main entity discovered and
for the broader property. The graph is iterated recursively for 𝑛 hops to form a contextual category
list, which is formed into a document. Figure 8b shows the categories that form the document in
our example.

4.4 Cyber-Physical Contextual Similarity
We now define the contextual similarity between a user’s physical movements with what they are
looking for online.
We define the physical context as the area of a shop served by a single AP, characterized by

latent semantic categories from DBPedia, denoted as 𝐶 = {𝑐1, 𝑐2, ..., 𝑐ℎ}, where ℎ is the number of
categories. The category documents, from the CCS system, are represented as 𝐷 = {𝑑1, 𝑑2, ..., 𝑑ℎ}
composed of subcategories and broader categories for 𝑐𝑖𝜖𝐶 . Thus, the physical context for each AP
is 𝑃𝑎 : {𝑝𝑎,1, 𝑝𝑎,2, ..., 𝑝𝑎,𝑙 }, where 𝑝𝑎,𝑖 ∈ 𝐶 for all shops that are located in the Voronoi regions of AP
𝑎𝑖 .
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Table 3. Semantic Categories with Max cosine similarity for sample queries

Annotated Category Identified Category Query

Cosmetics Cosmetics the face shop clear mascara reviews,
Muk Hair Wax

Clothing Clothing Superdry Sale,
Emporio Aramani

Fashion Fashion TopShop Sydney

Footwear Footwear Ugg Shoes

Mobile Phones Mobile Phones Nokia Lumia 520 reviews

We define the physical activity of a user as a trajectory 𝑇 = ((𝑎1, 𝑡1), . . . , (𝑎𝑛, 𝑡𝑛)), which is a
list of tuples of visited AP IDs and the cumulative time of association. We use 𝑎 = {𝑎1, . . . , 𝑎𝑛} to
represent AP, where 𝑛 is the number of APs user connected to during a single visit to the mall
and 𝑡 to represent time association where 𝑡𝑘 is the duration user spent connected to 𝑎𝑘 during the
visit: 𝑡 = {𝑡1, . . . , 𝑡𝑘 , . . . , 𝑡𝑛}. If a user was associated with an AP multiple times in a visit, the total
duration of time spent at this AP is stored.
We define cyber context in terms of queries extracted from query logs. During a single session

of a user, we extract all queries of a user represented as 𝑞 = {𝑞1, 𝑞2, . . . , 𝑞 𝑗}, where 𝑗 is the total
number of queries extracted from a user. We apply the queries to our CCS system, producing
𝐶𝑞𝑖 = {𝑐𝑞1 , 𝑐𝑞2 , . . . , 𝑐𝑞𝑚 } for each 𝑞𝑖 ∈ 𝑞. The cyber context is presented as

𝑄𝑐 =

𝑚⋃
𝑖=1

𝑐𝑞𝑖 = 𝑐𝑞1 ∪ 𝑐𝑞2 ∪ · · · ∪ 𝑐𝑞𝑚 . (1)

The similarity between the physical context 𝑃𝑐 and Cyber Context 𝑄𝑐 is calculated in two steps.
First, we represent the terms of each document using TF-IDF (Term Frequency - Inverse Document
Frequency [31]) weighting. Then we compute the cosine similarity between physical and cyber
using

𝑐𝑜𝑠 (𝑑𝑖 , 𝑄𝑐 ) =
𝑉 (𝑑𝑖 ).𝑉 (𝑄𝑐 )
|𝑉 (𝑑𝑖 ) | |𝑉 (𝑄𝑐 ) |

. (2)

The contextual similarity with Semantic Category 𝑐𝑖 represented as 𝐶𝑆 (𝑐𝑖 ) is 𝑐𝑜𝑠 (𝑑𝑖 , 𝑄𝑐 ) boosted
with Physical Context similarity i.e. time spent at each category denoted as 𝑡𝑐𝑖 .

𝐶𝑆 (𝑐𝑖 , 𝑄𝑐 ) = 𝑡𝑐𝑖 ∗ 𝑐𝑜𝑠 (𝑑𝑖 , 𝑄𝑐 ) (3)
where 𝑡𝑐𝑖 > 0 and 𝑐𝑜𝑠 (𝑑𝑖 , 𝑄𝑐 ) > 0.

4.5 Analysis
We examined the cosine similarity between user issued queries and Semantic Categories. We first
manually annotated each query with 18 Semantic Categories. The annotation was conducted by
three participants who were given a list of queries and a list of semantic categories. They performed
the task independent of the contextual similarity model and were asked to label queries with the
semantic categories out of the given list. We then compared the annotated categories with the Top-3
categories retrieved by cosine similarity, see Figure 9. To measure the similarity in distribution
across the two sets of categories labels, we calculated a Pearson Correlation Coefficient 𝑅 = 0.6084
and found it to be significant, 𝑝-value = 0.0073.
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Fig. 9. Distribution of manually annotated and labeled categories

Fig. 10. cosine similarity for Cyber Query: Ugg Shoes

In Table 3 and Figure 10, we see the category with max cosine similarity for the query Ugg Shoes
(a footwear brand) is the Footwear. Figure 11 shows the cosine similarity for each semantic category
for query the face shop clear mascara reviews. The max similarity is Cosmetics, which is clearly
chosen by our annotators. We evaluated query categorization using Accuracy@3 for 217 manually
annotated queries. Accuracy was 49.2%, which shows a successful category mapping of the query
text.
In our Shopping Intent recognition work (explained next), we used a similarity distribution

across all categories for a given query set per user trajectory. Such a feature vector was shown to
improve the accuracy of classification.

5 SHOPPING INTENT RECOGNITION SYSTEM
To review, given an AL, QL, Shop Categories, and Voronoi cells we create an Intent Recognition
Model as shown in Figure 12. The first step is to enrich shop categories, provided by the mall
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Fig. 11. cosine similarity for Cyber Query: the face shop clear mascara reviews

Fig. 12. Shopping Intent Recognition System

operator, with categories from DBPedia. With such enriched categories (stored as documents), we
then label each AP with the categories based on the shops within range of the AP’s Voronoi cell.
After semantic labeling, we determine Physical Activity (trajectories) and Cyber Context for user
sessions as recorded in the logs. We then calculate a Cyber-Physical Contextual similarity, which
allows us to form Contextual Similarity features that act as input to our Intent Recognition Model
along with Physical and Cyber features derived from the AL and QL.

5.1 Cyber-Physical-Contextual Features
We investigate an approach for recognizing in-store shopping behavior from an individual’s physical
movements from Wi-Fi traces and cyber activity from Web queries that users issue. Our approach
rests on the belief that user intent can be identified by correlating their movements with the
content they look online. During a typical visit to a shopping center, a shopper uses Wi-Fi either
for browsing or when they are looking for some shop or an item they are interested in. If the user
who is using Wi-Fi, has a shopping intention, then there is high possibility that they visit some
specific category shops and look for related items/category online either to compare the price or
for reviews. For example, we show part of the user trajectory in Table 4 where user looked for "nest
au homeware" online and an association of more that 10 minutes was found with an AP wap032
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Table 4. User Trajectory

Wi-fi AP AP Semantics Query

wap030
Restaurant nest au homeware
Cafe
Groceries

wap032
Homeware
Clothing
Footwear

wap009
Clothing
Footwear

· · · · · · · · ·

listed under category "Homeware". We try to correlate this behavior using 3 feature set , Physical,
Query and Contextual as given below where we use Trajectory-based Cyber-Physical contextual
Similarity for contextual features. Recognition is a binary classifier that labels a user trajectory as
Intentful (IF) or Intentless (IL). We examine three feature sets each examined to predict intent.

1) Physical Activity vs Intent:
• F1: Trajectory length: is defined as the number of APs in a user’s trajectory;
• F2: Total duration: how long users spend in the mall in seconds;
• F3-F20: Time spent per shop category: the distribution of the total duration over shop
categories.

2) Cyber-Physical activity vs Intent:
• F1-F20: As defined above
• F21: Number of queries.

3) Contextual Features vs Intent:
• F22-F39: 𝐶𝑆 (𝑐1)-𝐶𝑆 (𝑐18) - Contextual Similarity of User’s Cyber-Physical activity with Se-
mantic Category documents i.e. 𝑑1-𝑑18;

• F40: Max Contextual Similarity - is𝑚𝑎𝑥 (𝐶𝑆 (𝑐1) : 𝐶𝑆 (𝑐18));
• F41: Sum of 𝐶𝑆 (𝑐1) : 𝐶𝑆 (𝑐18);
• F42: the cosine similarity of categories extracted from user issued queries in a single visit
with the list of over stores in the mall;

• F43: the cosine similarity of categories extracted from user issued queries in a single visit
against a list of keywords/categories extracted from crowdsourcedWeb applications including
Foursquare, Yelp and Google places for stores in the mall.

5.2 Intent Recognition Model
As most of our cyber-physical-contextual features are independent of each other, we deploy a
Decision Table/Naïve Bayes (DTNB) hybrid classification method [9] to perform the Intentful and
Intentless classification. The method selects the deterministic features for recognizing intent from
a range of input features. We examine how each method performs.

Decision Table (DT) Model. Given a set of labeled instances as a training sample, an induction
algorithm creates a decision table with default rule mapping to the majority class. The DT model
has two main components:
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• Schema: a set of features selected by maximizing cross-validated performance using forward
search.

• Body: a multiset of labeled instances.

Each instance consists of a value for each of the features in the schema and a value for the class.
For label assignment to an unlabeled instance 𝐼 by a DT model classifier, let 𝐿 be the set of labeled

instances in the model matching a given instance 𝐼 . There is a match between 2 instances if the
features in the schema are same. If 𝐿 = 0, the DT model returns the majority class, otherwise it
returns the majority class in 𝐿.

Naïve Bayes (NB). This widely used classifier takes the following form:

𝑝 (𝑙𝑖 |𝑓𝑖 ) =
𝑝 (𝑓𝑖 |𝑙𝑖 )𝑝 (𝑙𝑖 )

𝑝 (𝑓𝑖 )
, (4)

where 𝑙𝑖 is a class label and 𝑓𝑖 is a contextual feature; 𝑝 (𝑙𝑖 , 𝑓𝑖 ) is the probability of 𝑓 in 𝑙𝑖 ; 𝑝 (𝑓𝑖 |𝑙𝑖 ) is
the probability of 𝑓𝑖 given class 𝑙𝑖 ; 𝑝 (𝑙𝑖 ) is the probability of occurrence of class 𝑙𝑖 and 𝑝 (𝑓𝑖 ) is the
probability of occurrence of feature 𝑓𝑖 .

Considering the features are defined from physical and cyber perspectives, we assume that they
have an independent distribution. Thereby Eq. 4 becomes:

𝑝 (𝑓 |𝑙𝑖 ) = 𝑝 (𝑓1 |𝑙𝑖 ) ∗ 𝑝 (𝑓2 |𝑙𝑖 ) ∗ ... ∗ 𝑝 (𝑓𝑛 |𝑙𝑖 ). (5)

In a classification task, given a feature set 𝑓 = {𝑓1, 𝑓2, ..., 𝑓𝑛} for binary classification of {𝑙𝑖 , 𝑙 𝑗 },
NB labels an instance as class 𝑙𝑖 if its posterior probability is higher than the other class, namely
𝑝 (𝑓 |𝑙𝑖 ) > 𝑝 (𝑓 |𝑙 𝑗 ).

A DTNB Bayes Hybrid model. The model is a simple Bayesian network in which the DT represents
a conditional probability table [9]. The algorithm for learning the combined model (DTNB) works
in a similar way as that of stand-alone DT. It partitions the feature set into two disjoint subsets: one
for the DT, the other for NB. Then, it uses forward selection, where, at each step, selected attributes
are modeled by NB and the remainder by the DT.
The class probability of the DT and NB are then combined to generate overall class probability

estimates. Assuming 𝑓𝐷𝑇 is the set of features in the DT and 𝑓𝑁𝐵 the one in NB, the overall class
probability is computed as

𝑃 (𝑙𝑖 |𝑓 ) = 𝑎 ∗ 𝑃𝐷𝑇 (𝑙𝑖 |𝑓𝐷𝑇 ) ∗ 𝑃𝑁𝐵 (𝑙𝑖 |𝑓𝑁𝐵/𝑃 (𝑙𝑖 )) (6)

where 𝑃𝐷𝑇 (𝑙𝑖 |𝑓𝐷𝑇 ) and 𝑃𝑁𝐵 (𝑙𝑖 |𝑓𝑁𝐵) are the class probability estimates from the DT and NB respec-
tively, 𝑎 is a normalization constant, and 𝑃 (𝑙𝑖 ) is the prior probability of the class label 𝑙𝑖 .

5.3 Future Location Prediction
We now investigate the following question: Given a user’s physical and cyber activities, is the
semantic content of queries of value for location prediction? From initial analysis of the data (Wi-Fi
APs association and Web logs), we found that user queries in a shopping center are somewhat
indicative of their interests for that particular visit. For example, user𝐴 enters the mall and searches
for a particular store and follows a trajectory that ends in the vicinity of that store. Here, we try to
find if the contextual information can be exploited for future location prediction in an indoor space
by using Collaborative Filtering as the baseline prediction model. We first formulate the problem,
then describe the methodology, and detail experiments.
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5.3.1 Problem Formulation. Given a list of𝑚 user trajectories 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑚} and a list of 𝑛 APs
𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑛}. Each user trajectory 𝑡𝑖 has a list of APs 𝐴𝑡𝑖 ⊂ 𝐴, which the user has connected
to in the order of association time. The user issues a set of 𝑛 queries 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛}. We can,
therefore, calculate the likelihood of visiting an un-visited AP 𝑎 𝑗 ∉ 𝐴𝑡𝑖 for the trajectory 𝑡 𝑗 ∈ 𝑇 .

5.3.2 Methodology. We used Item-based collaborative filtering as the baseline model. For the
recommendation algorithms, we deploy both User-Based Collaborative Filtering and Item-based
Collaborative Filtering [23] with Contextual Similarity defined as follows.

User-Based Collaborative Filtering. This method solves the recommendation problem from the
users’ perspective. It firstly identifies the neighbors of a target user (i.e., they either rate different
places similarly or they tend to visit similar places), then tries to aggregate the neighbours’ opinion
to estimate what the target user may like. This technique is widely used in practice for item
recommendation and location prediction.

Item-Based Collaborative Filtering. The item-based approach investigates the set of locations a
target user has rated or visited and computes their similarity to the target (un-visited) location. It
then selects the 𝑘 most similar locations 𝑝1, 𝑝2, ..., 𝑝𝑘 for recommendation.

Similarity Computation. The similarity between users or items plays a key role in both algorithms.
Given the rating vectors of item 𝑖 and 𝑗 , we aim to find how similar these two items are rated by a
set of users and then to calculate the similarity 𝑠𝑖, 𝑗 between them. There are a number of different
metrics to these similarities. But as we have a binary vector – where 0 represents a location not
visited and 1 represent a location visited by the user – we chose Jaccard Similarity. Given two items
𝑖, 𝑗 represented as binary vectors 𝐼 , 𝐽 in𝑚-dimensional user space. The similarity 𝑠𝑖, 𝑗 is computed
as follows:

𝑠𝑖, 𝑗 = 𝐽 (𝐼 , 𝐽 ) = |𝐼 ∩ 𝐽 |
|𝐼 ∪ 𝐽 | =

|𝐼 ∩ 𝐽 |
|𝐼 | + |𝐽 | − |𝐼 ∩ 𝐽 | . (7)

Given a user trajectory 𝑡𝑖 , a similarity value 𝑠𝑎𝑖 ,𝑎 𝑗
is calculated for all items 𝑎𝑖 ∈ 𝑡𝑖 (locations

visited by the user) and 𝑎 𝑗 ∈ |𝐴 − 𝑡𝑖 | (all other locations not visited by the user). Thus, we obtain
the similarities between all visited and all un-visited locations. For each un-visited location 𝑎 𝑗 ,
we take the average of its similarities to each 𝑎𝑖 ∈ 𝑡𝑖 as its estimated similarity to the target user:
𝑠 (𝑖, 𝑗) = 1/𝑛∑𝑖<𝑛

𝑖=1 𝑠𝑖, 𝑗 .
For top 𝑘 prediction, we sort the similarity vector 𝑠 and retrieve top-k locations. This provides us

with a set of items that are most likely to be visited by the user based on the historical locations
visited. Next, we weigh this prediction score for each AP using a contextual similarity of queries
issued by the user.
The similarity between the physical and cyber Context 𝑄𝑐 is calculated in two steps. Firstly,

the cosine similarity between each document 𝑑𝑖 ∈ 𝐷 and 𝑄𝑐 (TF-IDF vector) is measured. This
generates a similarity vector 𝐶𝑆 of size ℎ where 𝐶𝑆𝑖 is the similarity of query document 𝑄𝑐 with
category document 𝑑𝑖 . Secondly, we generate a dot product of the physical context vector 𝑃𝑎𝑖 for
𝑎𝑖 ∈ 𝐴 with the similarity vector 𝐶𝑆 that represents the user query context corresponding to each
𝑎𝑖 as follows:

𝑆𝑆 = 𝑃𝑎𝑖 ·𝐶𝑆 =

ℎ∑
𝑗=1

𝑃𝑎𝑖 , 𝑗 ·𝐶𝑆 𝑗 = 𝑃𝑎𝑖 ,1 ·𝐶𝑆1 + 𝑃𝑎𝑖 ,2 ·𝐶𝑆2 + ..... + 𝑃𝑎𝑖 ,ℎ ·𝐶𝑆ℎ (8)

where ℎ is the number of categories.

, Vol. 1, No. 1, Article . Publication date: February 2018.



Joint Modelling of Cyber Activities and Physical Context 19

The semantic similarity vector 𝑆𝑆 is used to weigh the item-item similarity score by taking the
product of 𝐽𝑆𝑖 and 𝑆𝑆𝑖 , where 𝑖 denotes the index of an AP 𝑎𝑖 :

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐽𝑆𝑖 , 𝑆𝑆𝑖 ) = 𝐽𝑆𝑖 ∗ 𝑆𝑆𝑖 . (9)
The prediction is given by sorting the weighted similarity score and extracting top 𝑘 items.

6 EXPERIMENTS
We focus our experiments on a subset of complete user trajectories with associated user queries. A
complete trajectory is one where the start and end points correspond to entry/exit points of the mall.
Such trajectories must connect at least three APs. Out of 6784 total trajectories, we identified 176 that
are complete. Four annotators, without in-depth knowledge of the experiment, manually categorized
the trajectories into intentful (48) and intentless (128), with 100% inter-annotator agreement. The
annotators inspected the queries and marked them as relevant if the content was deemed related to
the environment of the shopping centre. A session was labelled as intentful if at least one of the
queries was relevant, and intentless otherwise.

To evaluate the classification models we used: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦%, the percent of correct classifications;
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, the percent of correct positive classifications; 𝑅𝑒𝑐𝑎𝑙𝑙 , the percent of positive instances
correctly classified; and 𝐹 − 𝑆𝑐𝑜𝑟𝑒 , a weighted harmonic mean of Precision and Recall.

To evaluate location prediction, we used: Accuracy@k, the number of correct locations predicted
over 𝑘 , which is the total no. of locations predicted; and MRR, the ranking of first correct location,
𝑀𝑅𝑅 = 1

𝑛

∑𝑛
𝑖=1

1
𝑅𝑖
, where 𝑛 is the no. of prediction results and 𝑅𝑖 is the rank of first correct predicted

location for trajectory 𝑖 .

Features Method Accuracy % F-Score Precision Recall

NB 63.06 0.59 0.56 0.63
Phy DT 72.73 0.61 0.53 0.73

DTNB 72.73 0.61 0.53 0.73

NB 63.06 0.59 0.56 0.63
Phy + Cyb DT 78.41 0.73 0.81 0.78

DTNB 78.41 0.73 0.81 0.78

NB 73.29 0.68 0.69 0.73
Cont DT 76.13 0.73 0.74 0.76

DTNB 76.7 0.75 0.75 0.77

NB 69.32 0.66 0.65 0.69
Phy + Cont DT 76.14 0.73 0.74 0.76

DTNB 76.14 0.74 0.74 0.76

NB 69.32 0.66 0.65 0.69
Phy + Cyb + Cont DT 78.41 0.75 0.79 0.78

DTNB 81.25 0.8 0.8 0.81
Table 5. Intent Recognition Results

6.1 Results on Intent Recognition
As shown in Table 5, the DTNB hybrid classifier always performs comparably or better than DT
and NB. The best accuracy of 81.25% is achieved with DTNB on all Cyber-Physical-Contextual
features. The results show that the increase in performance with contextual features is statistically
significant (𝑝-value = 0.0006 for Physical vs Physical + Contextual, and 0.0008 for Cyber vs Cyber
+Cyber + Con. The paired 𝑡-test statistics are shown in Table 6.
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Features 𝑑𝑓 𝑡 𝑝-value

Phy - Phy+Con 11 4.7833 0.0006

Phy+Cyb - Phy+Cyb+Con 11 3.1747 0.0008

Table 6. Paired t test

Fig. 13. Prediction Results

6.2 Results on Future Location Prediction
Dataset. We performed a prediction experiment on 994 complete and partial trajectories where at

least one query was issued. We then partitioned 325 trajectories into training and test trajectories.
The partition point is the AP where the user issued their first query and the rest of the trajectory
are used for evaluating prediction results to see if the semantic context of queries with respect to
physical locations helps in improving prediction results. We then used 669 full trajectories and
325 partitioned train trajectories to generate a collaborative filtering matrix in order to get Top-10
prediction results for the 325 partitioned test trajectories using simple Item-Item similarity method
(denoted as i-i) and the improved similarity score computation using Weighted Similarity (denoted
as i-i-w).
The bar chart on the left in Figure 13 shows results with no improvement in accuracy using

contextual similarity weight. We then generated a chart of predicted APs on the 𝑥-axis and a count
of APs on the y-axis in the test set (all) along with predicted APs using i-i and i-i-w methods as
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Fig. 14. Prediction Results

Fig. 15. Sensitivity Analysis of Accuracy@10 by removed top-n APs, 𝑛 ranging from 1 to 20

shown in Figure 14. We see that the i-i-w method (bottom graph in Figure 14) performs well at
predicting less popular APs. This can be because less popular locations might be semantically
similar.
To assess the correctness of our assumptions based on the chart, we performed a sensitivity

analysis on Accuracy@10 by removing the top 20 APs. Figure 15 shows that i-i-w consistently
outperforms i-i after removing some of the popular APs. We then measured Accuracy@k for
𝑘 = {1, 5, 10} after removing the Top-10 APs from the test set (Figure 13). We see an improvement
in accuracy for item-item weighted (i-i-w) compared to item-item (i-i) where accuracy increases
with an increase in the number of predictions (𝑘). The improvement in accuracy is statistically
significant between i-i and i-i-w (𝑝 = 0.0188, two-tailed paired 𝑡-test [10]). We also used MRR to
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Fig. 16. Mean Reciprocal rank for k predictions, 𝑘 = 1,5,10

evaluate the ranking of first correct location predicted using i-i and i-i-w for top-k prediction,
𝑘 = 1, 5, 10. As shown in Figure 16, MRR for i-i-w is better then i-i. We thus conclude that contextual
similarity improves prediction of less popular locations with better ranking as well.

7 DISCUSSION
For behavior recognition, we first performed an experiment to classify users’ shopping intent
as intentful and intentless, by using users’ Cyber-Physical-Contextual activities captured by a
Wi-Fi APs association log and a Web query log. We proposed a Shopping Intent Recognition
System, which includes Semantic Categorization to semantically label a physical space and find
the correlation between open text queries with the physical semantics. We also described Cyber-
Physical Contextual Similarity model to extract contextual features including Physical and Cyber
activities captured by Wi-Fi AP and Web Query logs. Finally, we detailed a User intent recognition
system to classify a user’s intent.

We showed that the proposed contextual features significantly improved the accuracy of intent
recognition models where we used Decision Tables, Naïve Bayes and a Decision Table Naïve Bayes
hybrid model. The models were applied to a set of 176 real user trajectory sessions in an indoor
shopping mall. The DTNB achieved the best performance, compared to DT and NB over all feature
sets. The maximum classification accuracy of 81.25% was achieved by using DTNB on all feature
sets (Cyber-Physical-Contextual). We also note that in the entire query log dataset for the target
environment, only 8% of the queries belong to the broad shopping semantic categories from Table 1.
If this set of queries was larger, the similarity detected may not be conclusive. But because this
category of queries represents a small subset of the overall query activity of indoor mall users, the
high level of similarity detected between the semantics of the physical context and those of the
query activity are strong indicators of intentful activity.

We further performed an experiment to study the effect of Cyber-Physical Contextual Similarity
on location prediction using Collaborative Filtering. Using contextual features as a weight to
the probability likelihood calculated from collaborative filtering model improves the accuracy of
prediction of less popular locations.

Limitations. This paper has largely focused on the semantic expansion of spatial features, but
more can be done on embedding temporal features. The data evidently reveals that some trajectory
behaviours are specific to certain visiting intent (e.g. going for a lunch) on different temporal
contexts, such as shown on Figure 17, where there are direct movements between the first floor
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Fig. 17. Movement Flows between Wi-Fi Access Points across Floors

to fifth floor during noontime and lunch break period. The fifth floor is where the food court is
located. If we also extract the temporal features and expand the semantic representation, this could
potentially boost the predictability of the intent.

Further, these features could also be used further for profiling users [27], useful for providing a
personalised model to predict the visiting intent and next location indoors.
In addition, sequential or continuous behaviours of the whole trajectory in a session is not yet

incorporated in the CPS model of this paper. From our earlier paper, we have observed repeating
and habitual behaviours of returning visitors are observed across the history [28], which could
be used for continuous trajetory prediction [30] for example, or intelligent notification, shopping
assistant, or recommendation [26] purposes.

Finally, a complete semantic expansion and embedding of cyber, physical, social behaviours can
be done in the future. Recent work on graph embedding, especially node and relation embedding
[33] can be used to deal with the data sparsity and cold start problems in this data (or similar
datasets) when high-dimensional features are combined across multiple sources or domains. Such
an embedding could also generate more effective recommendation results.

8 CONCLUSION AND FUTUREWORK
We proposed a semantic enrichment and contextual similarity model that deals with the major chal-
lenge of mapping semantic similarity across two different domains: cyber and physical behaviours.
We show that using this combined contextual similarity further improves the accuracy of both
intent recognition and location prediction with respect to the use of cyber/physical features in
isolation.

There are some limitations to our work that can be improved in the future. Firstly, we performed
the Shopping Intent Recognition on a small dataset, as manual labeling of trajectories and the
respective query sets was required. Future experiments with crowdsourced labelling of much larger
datasets are envisaged. Secondly, we only studied the effect of contextual features on location
prediction. Future works should investigate the effect of other features, such as time spent at an AP
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captured through other distance metrics (e.g., cosine similarity or Pearson correlation). Finally, as
we characterize users based on their detailed cyber activities and physical contexts, the construction
of group profiles based on demography and visiting patterns will be further investigated.

REFERENCES
[1] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark Smith, and Pete Steggles. 1999. Towards a better

understanding of context and context-awareness. In Handheld and ubiquitous computing. Springer, 304–307.
[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. 2007. Dbpedia: A

nucleus for a web of open data. Springer.
[3] Y. B. Bai, S. Wu, G. Retscher, A. Kealy, L. Holden, M. Tomko, A. Borriak, B. Hu, M. Sanderson, H. R. Wu, and K. Zhang.

2014. A New Method for Improving Wi-Fi Based In-door Positioning Accuracy. Springer Verlag, Berlin.
[4] Christian Bizer, Tom Heath, and Tim Berners-Lee. 2009. Linked data-the story so far. Semantic Services, Interoperability

and Web Applications: Emerging Concepts (2009), 205–227.
[5] Karen Church and Barry Smyth. 2009. Understanding the Intent Behind Mobile Information Needs. In IUI (09). ACM,

New York, NY, USA, 247–256.
[6] Milan Dojchinovski and Tomas Kliegr. 2013. Entityclassifier.eu: Real-time Classification of Entities in Text with

Wikipedia. In ECMLPKDD (2013). 1–1.
[7] Huizhong Duan and ChengXiang Zhai. 2015. Mining Coordinated Intent Representation for Entity Search and

Recommendation. In CIKM (2015). ACM, New York, NY, USA, 333–342.
[8] Moustafa Elhamshary and Moustafa Youssef. 2014. CheckInside: A Fine-grained Indoor Location-based Social Network.

In UbiComp (14). ACM, New York, NY, USA, 607–618.
[9] Mark A Hall and Eibe Frank. 2008. Combining Naive Bayes and Decision Tables.. In FLAIRS Conference, Vol. 2118.

318–319.
[10] Henry Hsu and Peter A Lachenbruch. 2008. Paired t test. Wiley Encyclopedia of Clinical Trials (2008).
[11] Bernard J. Jansen, Danielle L. Booth, and Amanda Spink. 2008. Determining the informational, navigational, and

transactional intent of Web queries. Information Processing & Management 44, 3 (May 2008), 1251–1266.
[12] Kasthuri Jayarajah, Youngki Lee, Archan Misra, and Rajesh Krishna Balan. 2015. Need Accurate User Behaviour?: Pay

Attention to Groups!. In UbiComp (15). ACM, New York, NY, USA, 855–866.
[13] Manpreet Kaur, Flora D. Salim, Yongli Ren, Jeffrey Chan, Martin Tomko, and Mark Sanderson. 2018. Shopping Intent

Recognition and Location Prediction from Cyber-physical Activities via Wi-fi Logs. In Proceedings of the 5th Conference
on Systems for Built Environments (BuildSys ’18). ACM, New York, NY, USA, 130–139. https://doi.org/10.1145/3276774.
3276786

[14] John Krumm and Dany Rouhana. 2013. Placer: Semantic Place Labels from Diary Data. In UbiComp (13). ACM, New
York, NY, USA, 163–172.

[15] J. Krumm, D. Rouhana, and M. W. Chang. 2015. Placer ++: Semantic place labels beyond the visit. In PerCom. 11–19.
[16] Michal Laclavík, Marek Ciglan, Sam Steingold, Martin Seleng, Alex Dorman, and Stefan Dlugolinsky. 2015. Search

Query Categorization at Scale. InWWW. International World Wide Web Conferences Steering Committee, 1281–1286.
[17] Claudio Martella, Armando Miraglia, Marco Cattani, and Maarten van Steen. 2016. Leveraging Proximity Sensing to

Mine the Behavior of Museum Visitors. In PerCom 2016. IEEE.
[18] Archan Misra and Rajesh Krishna Balan. 2013. LiveLabs: Initial Reflections on Building a Large-scale Mobile Behavioral

Experimentation Testbed. SIGMOBILE Mob. Comput. Commun. Rev. 17, 4 (Dec. 2013), 47–59.
[19] Wendy W Moe. 2003. Buying, searching, or browsing: Differentiating between online shoppers using in-store

navigational clickstream. Journal of consumer psychology 13, 1 (2003), 29–39.
[20] Anastasios Noulas, Salvatore Scellato, Neal Lathia, and Cecilia Mascolo. 2012. Mining user mobility features for next

place prediction in location-based services. In ICDM. IEEE, 1038–1043.
[21] Veljko Pejovic, Neal Lathia, Cecilia Mascolo, and Mirco Musolesi. 2015. Mobile-Based Experience Sampling for

Behaviour Research. arXiv preprint arXiv:1508.03725 (2015).
[22] Meeralakshmi Radhakrishnan, Sharanya Eswaran, Archan Misra, Deepthi Chander, and Koustuv Dasgupta. 2016. IRIS:

Tapping Wearable Sensing to Capture In-Store Retail Insights on Shoppers. In PerCom 2016. IEEE.
[23] Yongli Ren, Gang Li, and Wanlei Zhou. 2015. A survey of recommendation techniques based on offline data processing.

Concurrency and Computation: Practice and Experience 27, 15 (2015), 3915–3942.
[24] Yongli Ren, Flora Dilys Salim, Martin Tomko, Yuntian Brian Bai, Jeffrey Chan, Kyle Kai Qin, and Mark Sanderson. 2017.

D-Log: A WiFi Log-based differential scheme for enhanced indoor localization with single RSSI source and infrequent
sampling rate. Pervasive and Mobile Computing 37 (2017), 94 – 114. https://doi.org/10.1016/j.pmcj.2016.09.018

[25] Y. Ren, M. Tomko, K. Ong, B. Yuntian, and M. Sanderson. 2014. The Influence of Indoor Spatial Context on User
Information Behaviours. In Workshop on Information Access in Smart Cities, held in conjunction with the 36th European

, Vol. 1, No. 1, Article . Publication date: February 2018.

https://doi.org/10.1145/3276774.3276786
https://doi.org/10.1145/3276774.3276786
https://doi.org/10.1016/j.pmcj.2016.09.018


Joint Modelling of Cyber Activities and Physical Context 25

Conference on Information Retrieval ECIR 2014, M-D Albakour, C. Macdonald, I. Ounis, C. L. A. Clarke, and V. Bicer
(Eds.). ACM.

[26] Y. Ren, M. Tomko, F. D. Salim, J. Chan, C. L. A. Clarke, and M. Sanderson. 2018. A Location-Query-Browse Graph for
Contextual Recommendation. IEEE TKDE 30, 2 (Feb 2018), 204–218.

[27] Yongli Ren, Martin Tomko, Flora D. Salim, Jeffrey Chan, and Mark Sanderson. 2018. Understanding the predictability
of user demographics from cyber-physical-social behaviours in indoor retail spaces. EPJ Data Science 7, 1 (2018), 1.

[28] Yongli Ren, Martin Tomko, Flora Dilys Salim, Kevin Ong, and Mark Sanderson. 2017. Analyzing Web behavior in
indoor retail spaces. JASIST 68, 1 (2017), 62–76.

[29] Amin Sadri, Yongli Ren, and Flora D. Salim. 2017. Information gain-based metric for recognizing transitions in human
activities. Pervasive and Mobile Computing 38 (2017), 92 – 109. https://doi.org/10.1016/j.pmcj.2017.01.003

[30] Amin Sadri, Flora D. Salim, Yongli Ren, Wei Shao, John C. Krumm, and Cecilia Mascolo. 2018. What Will You Do for
the Rest of the Day?: An Approach to Continuous Trajectory Prediction. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 2, 4, Article 186 (Dec. 2018), 26 pages. https://doi.org/10.1145/3287064

[31] Gerard Salton and Christopher Buckley. 1988. Term-weighting Approaches in Automatic Text Retrieval. Inf. Process.
Manage. 24, 5 (Aug. 1988), 513–523. https://doi.org/10.1016/0306-4573(88)90021-0

[32] Long Vu, Quang Do, and Klara Nahrstedt. 2011. Jyotish: A novel framework for constructing predictive model of
people movement from joint wifi/bluetooth trace. In Pervasive Computing and Communications (PerCom), 2011 IEEE
International Conference on. IEEE, 54–62.

[33] Xianjing Wang, Flora D. Salim, Yongli Ren, and Peter Koniusz. 2020. Relation Embedding for Personalised POI
Recommendation. In 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2020).

[34] C. W. You, H. L. C. Kao, B. J. Ho, Y. H. T. Chen, W. F. Wang, L. T. Bei, H. H. Chu, and M. S. Chen. 2014. ConvenienceProbe:
A Phone-Based System for Retail Trade-Area Analysis. IEEE Pervasive Computing 13, 1 (Jan. 2014), 64–71.

[35] C. W. You, C. C. Wei, Y. L. Chen, H. h Chu, and M. S. Chen. 2011. Using Mobile Phones to Monitor Shopping Time at
Physical Stores. IEEE Pervasive Computing 10, 2 (April 2011), 37–43.

[36] Yunze Zeng, Parth H. Pathak, and Prasant Mohapatra. 2015. Analyzing Shopper’s Behavior Through WiFi Signals. In
Proceedings of the 2Nd Workshop on Workshop on Physical Analytics (WPA ’15). ACM, New York, NY, USA, 13–18.

, Vol. 1, No. 1, Article . Publication date: February 2018.

https://doi.org/10.1016/j.pmcj.2017.01.003
https://doi.org/10.1145/3287064
https://doi.org/10.1016/0306-4573(88)90021-0

	Abstract
	1 Introduction
	2 Background
	3 Overview and Dataset Characteristics
	3.1 Research questions
	3.2 Data Acquisition
	3.3 Query Processing
	3.4 AP Association
	3.5 Web Content-AP Correlation

	4 Cyber-Physical Semantic Categorization and Contextual Similarity
	4.1 Preliminaries
	4.2 Physical Context
	4.3 Cyber Context
	4.4 Cyber-Physical Contextual Similarity
	4.5 Analysis

	5 Shopping Intent Recognition System
	5.1 Cyber-Physical-Contextual Features
	5.2 Intent Recognition Model
	5.3 Future Location Prediction

	6 Experiments
	6.1 Results on Intent Recognition
	6.2 Results on Future Location Prediction

	7 Discussion
	8 Conclusion and Future Work
	References

