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ABSTRACT
This paper explores the utility of a Large Language Model (LLM)
to automatically generate queries and query variants from a de-
scription of an information need. Given a set of information needs
described as backstories, we explore how similar the queries gener-
ated by the LLM are to those generated by humans. We quantify
the similarity using different metrics and examine how the use of
each set would contribute to document pooling when building test
collections. Our results show potential in using LLMs to generate
query variants. While they may not fully capture the wide variety
of human-generated variants, they generate similar sets of relevant
documents, reaching up to 71.1% overlap at a pool depth of 100.

CCS CONCEPTS
• Information systems → Test collections; Query representa-
tion.
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1 INTRODUCTION AND BACKGROUND
Information Retrieval (IR) has been dedicated to delivering relevant
information in response to user queries. The realization of this objec-
tive has been facilitated by the use of offline test collections, which
often provide a single representation (query) for each information
need. The single query assumption is convenient for numerous
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reasons. It helps to make the judging process economically viable
(along with the system pooling approach in the Cranfield paradigm
of test collection construction [19]), and it has provided a consis-
tent, reusable environment for the development of retrieval systems
and evaluation measures. The importance of query variations for
enumerating relevant documents in a test collection dates back
several decades [18] and previous tracks at TREC have explored the
significance of such variance [6]. More recently, there has been a
line of research providing further insights from the user perspective
with the advent of crowd-sourcing technologies [2, 13].

Query variants are alternative formulations of the same infor-
mation need. For example, “what hiking options are there in summer
in sangre de cristo” and “sangre de Cristo, new mexico hiking” are
both query variants generated in response to the same information
need, i.e., finding information for a hiking trip in the Sangre de
Cristo mountain region during summer. Bailey et al. [2] showed
that given the same backstory, users generate about 57 query vari-
ants on average - which is anticipated to increase as the number
of participants grows. Similar findings are reported by Mackenzie
et al. [12] for queries generated to find additional information in
response to document summaries.

The impact of query variants on retrieval has been empirically
demonstrated in prior research. Culpepper et al. [7] showed that
variants impact effectiveness substantially more than that due to
topic or ranking models. Penha et al. [17] tested the impact of vari-
ants using neural and transformer-based answer retrieval models.
Their experimental results demonstrated a 20% effectiveness drop
on average.

Alaofi et al. [1] empirically demonstrated the impact of query
variants on a commercial search engine and different inverted in-
dexes. Their results point to a substantial retrieval inconsistency
and a concerning impact of variants on document retrievability.

Query variants have also been demonstrated to have a compara-
ble impact on the pool size as that of systems, calling to consider
incorporating them when building test collections [14]. The current
abstraction of one query per topic in the majority of test collections
raises two concerns about how realistic system evaluations are:
(1) is limiting system evaluation to a single representation of the
information need appropriate, and; (2) how the test collection is con-
structed in the first place. Can we offer a solution to (1) through the
use of the LLMs to generate human-like queries? Or perhaps have
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them at least act in place to generate similar pools for constructing
test collections (2)?

Query variants have primarily been obtained through crowd-
sourcing [2, 12], a process that is expensive to scale and may not
be an accurate representation of query variants as the information
needs are not naturally derived. A study by Zhang et al. [22], uses
click graphs to collect query variants, based on the assumption
that queries leading to the same click originate from the same
information need. It is not clear if this assumption always holds true
as a shared click may not necessarily indicate a shared intent and
many shared intents may not lead to a shared click. This requires
external labeling which is difficult to achieve objectively, and as in
the case of crowd-sourcing is expensive to scale.

In-Context Learning (ICL) [5] emerges as a promising Natural
Language Processing paradigm where no large domain-specific
datasets are required to fine-tune LLMs on a specific downstream
task. Instead, the LLMs are conditioned using a ‘context’ which is
simply a textual description of the task with a few or even zero
examples - often referred to as a few-, one-, or zero-shot learning.
This approach achieves promising results and has surpassed some
of the state-of-the-art models in some tasks. This holds the promise
of addressing the challenge posed by the scarcity of large query
variant datasets.

ICL has been recently used in IR, mainly to generate synthetic
queries given documents [3, 8, 10]. The synthetic query-document
pairs are then used to train a retrieval model. This approach builds
on earlier efforts which, prior to indexing, used fine-tuned LLMs
to extend documents by generating relevant queries, an approach
that was simple yet effective to surpass state-of-the-art models
on retrieval benchmarks [15]. Though the advances this research
direction has made, it specifically aims to harness the power of
LLMs to boost effectiveness scores by using some ‘representative’
queries, which may undergo some automated quality/consistency
filtering [8, 9], resulting in a query set that improves performance
but may not necessarily represent users.

The aim of this study is to explore using an LLM (GPT-3.5) as
an alternative method to generate query variants given backstories
(i.e., information need statements). We aim to compare the LLM-
generated queries to human-generated ones. We approach this by
quantifying the direct similarity between the two sets of queries
and examining how they behave when used for pool construction.
In particular, we pose the following questions:
RQ1 Can an LLM, with one-shot learning, generate queries that

are similar or perhaps identical to the ones generated by
humans?

RQ2 How do both sets compare when used for document pooling
when constructing test collections?

2 EXPERIMENT DESIGN
We detail the query sets and metrics used in the experiment.

2.1 Query Sets, Model Prompting, and Runs
We use two sets of query variants: human and GPT-3.5 generated.

The human-generated query variants – referred to as the human
set – were collected via crowd-sourcing as part of the UQV100 test
collection [2], which has one hundred backstories to describe one

(a) <Task Description>

(b) Example
<Input Backstory> <Output Query Variants>

<Input Backstory>  

GPT-3.5

q1
q2
:
qn

Output Query
Variants

Prompt Template 

…………………………

=>

=>

(c)

Figure 1: The prompt used to feed the GPT-3.5 model.

You normally wear casual clothes to work, but have an important
presentation to make, and decide to wear a jacket and tie. You know that
the "windsor knot" is recognized as being the most stylish way of tying a
tie, but have no idea how to do one, and would like to find out.

Backstory

Human-generated queries

1. how to tie a windsor knot
2. windsor knot tutorial
3. windsor knot how to
4. windsor tie knot tying instructions
5. what is a windsor knot

GPT-3.5-generated queries

1. how to tie a windsor knot
2. instructions for tying a windsor knot
3. windsor knot directions
4. youtube windsor knot how to tie a tie
5. how do i make a windsor knot

Figure 2: Randomly selected example variants generated by
humans andGPT-3.5 (𝑡𝑒𝑚𝑝 = 0.5). The variant in bold is repro-
duced by GPT-3.5 and the one in red appears less appropriate,
although similar ones are generated by humans, e.g., “wind-
sor knot wiki”.

hundred search topics derived from the TREC 2013 and 2014 web
track. Crowd workers were asked to read a backstory and formulate
an initial query for the search task.

To generate the GPT sets, we use the same backstories from
UQV100 to prompt the model. We use the text-davinci-003 model.1
This model is trained similarly to InstructGPT [16] using reinforce-
ment learning with reward models fine-tuned on human prefer-
ences.2 We experiment with different temperature settings 𝑡𝑒𝑚𝑝 =

{0.0, 0.5, 1.0}, a parameter that controls how deterministic themodel
is in generating the text.

We prompt the model using the template in Figure 1. The prompt
has (a) a task description, (b) an example, and (c) an input backstory
for the model to generate the corresponding query variants. The
task description is a natural language specification of the task,
which provides some context and details to guide the model to-
ward the expected distribution of the queries per backstory and the
average number of words per query, with specific values of these
settings based on prior research in query variant analysis [2, 12].

We follow a one-shot learning approach, in which the prompt
contains an example input backstory with its associated human-
generated output queries, randomly selected from UQV100. The
same random example (i.e., topic 275) is used to prompt the model
to generate query variants for the remaining 99 backstories. In
order to avoid the influence of observed data, topic 275 has been
excluded from our analysis.

We investigated zero-shot learning with no examples provided to
the model. However, this approach resulted in the model producing

1Last accessed on 2 February 2023
2https://platform.openai.com/docs/model-index-for-researchers
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Table 1: Query (Q) statistics of the human set and the three
GPT sets under different temperature 𝑡𝑒𝑚𝑝 settings.

Query
Variant Set

Number of Variants Avg.
Words/QTotal Unique Min. Max. Avg.

Human 10726 5681 19 101 57.38 5.34
GPT (𝑡𝑒𝑚𝑝 = 0.0) 4803 3638 11 172 36.75 5.95
GPT (𝑡𝑒𝑚𝑝 = 0.5) 3061 2999 12 88 30.29 4.86
GPT (𝑡𝑒𝑚𝑝 = 1.0) 2725 2719 12 48 27.46 4.65

long variants that closely resembled natural language questions.
Few-shot learning, where multiple examples are provided to the
model, might have produced better results [5], but as we were
limited by the number of available backstories we opted to use
one-shot learning. The distribution of all query sets are presented
in Table 1. Some example query variants from the human set and
one of the GPT sets for a given backstory are shown in Figure 2.

We generate runs for the human set and the GPT sets using
Anserini [21] BM25 (𝑏 = 0.4,𝑘1 = 0.9) on the ClueWeb12-B corpus3 -
which is also the corpus that was used to create relevance judgments
for the UQV100 test collection. The prompt template we use and the
generated GPT sets are publicly available to aid reproducibility.4

2.2 Metrics for Query Similarity
In addressing RQ1, we assume that the human set is the ideal set of
query variants and measure how similar the GPT sets are to that set.
We quantify that by measuring the average Jaccard Index between
the human set and the three GPT sets in which the overlapping
queries are an exact match between the two sets.

As keyword-based ranking models treat queries with slight vari-
ations equally, we incrementally relax the matching condition using
text transformations over the two sets and report the average Jac-
card Index score using the unique queries generated after each
transformation. Specifically, the overlap between the two sets is
quantified by initially determining the exact match of raw queries
in both sets. This matching condition is then relaxed to cumula-
tively allow for variations in punctuation (T1), word forms (T2),
stop words (T3), and word order (T4). We also show the Coverage
Ratio, which quantifies the proportion of queries from the human
set that are successfully reproduced in the GPT sets using the afore-
mentioned matching conditions.

2.3 Metrics for Retrieval Similarity
To address RQ2, we find the overlap between the union of docu-
ments returned from the variants of the human set and the GPT sets.
This measure quantifies the similarity of the two sets in their utility
for constructing document pools. The overlap is quantified using
the Jaccard Index, measured at different depths. While we are inter-
ested in measuring the overall overlap in documents (regardless of
their relevance judgments), we believe that the impact of the over-
lap of relevant documents in particular holds greater importance
in regards to system evaluation when constructing test collections.

3https://www.lemurproject.org/clueweb12.php/
4https://github.com/MarwahAlaofi/SIGIR-23-SRP-UQV100-GPT-Query-Variants
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Figure 3: Jaccard index (left) and coverage ratio (right) be-
tween the human and the GPT sets under different tempera-
ture 𝑡𝑒𝑚𝑝 settings. T0 denotes the original query set.

That is, if a GPT set fails to retrieve irrelevant documents that are
retrieved by the human set, those documents will remain unjudged
and thus treated as irrelevant in most effectiveness metrics, unless
using metrics that account for uncertainty (e.g., RBP).

We use the relevance judgments provided with the UQV100 col-
lection and measure the overlap by considering relevant documents
alone, i.e., those rated as Essential; Very Useful; Mostly Useful or
Slightly Useful.

Different properties of the document pool are computed, mainly
the pool size growth following [14], to measure the diversity of the
GPT sets in comparison to the human set. We hypothesize that a
diverse set of query variants given a topic is likely to retrieve differ-
ent documents leading to a higher growth rate than a set of similar
queries. This diversity is also examined using Rank-Biased Over-
lap (RBO) [20] to quantify the consistency between the retrieved
documents of the query variants given a topic. A topic RBO score
is the average score over all topic-variant pairs. Different query
effectiveness metrics are also computed for comparison.

3 RESULTS AND DISCUSSION
We examine query and retrieval similarity.

3.1 Query Sets Similarity
Figure 3 shows the overlap between the human set and the GPT
sets as measured by the Jaccard index and coverage ratio under
four matching conditions. Results indicate a minimum of 7.1% Jac-
card index between the GPT sets and the human set, with GPT
sets demonstrating exact coverage of at least 10.3% of the human-
generated queries. As expected, the queries demonstrate a greater
degree of overlap as they undergo successive transformations, ulti-
mately reaching a maximum Jaccard index of 13.5% and coverage
ratio of 18.7% when using a temperature of 0.5.

While the observed overlap does not seem to indicate a high
similarity, they should be interpreted within the limitation of the
UQV100 human set - which is still somewhat artificial. That is,
it cannot be conclusively stated that the unique query variants
generated by GPT cannot be written by humans should we have
more participants. The use of the UQV100 human-generated queries
as a reference point to an ideal set of variants is not realistic, and
while this comparison helps understand the capability of GPT, it
may limit our interpretation as an exhaustive set of query variants
given a topic would never exist. Incorporating human evaluation to
assess the extent to which the GPT sets approximate human queries

https://github.com/MarwahAlaofi/SIGIR-23-SRP-UQV100-GPT-Query-Variants
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Table 2: Average effectiveness metrics, RBO and pool properties at depth 10 for the human set and the GPT sets given all variants
across all topics. RBP and RBO are measured using 𝑝 = 0.9. Entries annotated with † and ‡ respectively indicate statistical
significance for a Bonferroni pairwise 𝑡-test at 𝑝 < 0.05 and 𝑝 < 0.01 compared to the human query set baseline. Topic 275 (the
example used to prompt the model) was removed from the computation and results are replicated independently.

Variant Set P@10 NDCG@10 RBP RBO Pool Properties

Size Relevant Unjudged

Human set 0.443 0.274 0.406 +0.111 0.201 190.69 0.30 0.13
GPT (𝑡𝑒𝑚𝑝 = 0.0) 0.386‡ 0.246† 0.358 +0.254‡ 0.235† 94.42 0.29 0.33
GPT (𝑡𝑒𝑚𝑝 = 0.5) 0.393‡ 0.249† 0.360 +0.238‡ 0.220 93.55 0.29 0.31
GPT (𝑡𝑒𝑚𝑝 = 1.0) 0.384‡ 0.240‡ 0.355 +0.263‡ 0.235† 105.21 0.27 0.37
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Figure 4: The average Jaccard index between the documents
retrieved by the human set and the GPT sets at different
depths given all documents (left) and relevant documents
only (right).
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Figure 5: The average pool size at depth 10 as more variants
are added. The growth lines are cut at 48, which is the maxi-
mum number of variants generated by GPT at 𝑡𝑒𝑚𝑝 = 1.

may yield more precise conclusions. This is, however, a question to
be explored in future research.

3.2 Retrieval Similarity
Figure 4 shows the overlap between the document pools generated
in response to the human set and the GPT sets at different depths
measured by the Jaccard index. A relatively high average overlap of
document pools is observed between the GPT sets and the human
set, which increases as we increase the depth. When considering
relevant documents only, the overlap is considerably high. With a
temperature of 1.0, for example, the pools overlap at 43.7% at depth
10. This increases to 71.1% when examining the pools at depth 100.

Effectiveness metrics, RBO scores and pool properties are given
in Table 2. It is evident that the human-generated variants yield
a larger pool size, almost double that generated by any GPT sets,
and which also grows faster (see Figure 5). This indicates a possible
higher diversity (e.g., more distinct query terms) in the human

set. This observation is supported by a lower consistency of the
variants from the human set, as measured by RBO (significant with
the temperature set to 0.0 or 1.0).

Human-generated variants are significantlymore effective across
all metrics. GPT queries, on the other hand, have higher residuals
which indicate that, givenmore judgments, theymay achieve higher
effectiveness scores. This is also reflected in the higher proportion
of the unjudged documents returned in the GPT generated pools.
It would be interesting to further investigate the unjudged por-
tion of the GPT sets to understand whether they retrieve relevant
documents that were not found through the human set.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we posed the following questions:

RQ1 Can an LLM, with one-shot learning, generate queries that
are similar or perhaps identical to the ones generated by
humans?

RQ2 How do both sets compare when used for document pooling
when constructing test collections?

We found that for RQ1, GPT reproduced a reasonable portion
of the human-generated queries. The similarity to human queries
is yet to be fully understood given the limitation of the human set.

For RQ2, we found that GPT queries seem to have a substantial
overlap in the pool of documents, particularly when we consider
the relevant set alone. At 71.1% overlap at depth 100, GPT shows
potential for replacing human query variants with synthetically
generated ones during document pool construction.

This work presents a new opportunity to conveniently expand
existing test collections, particularly those resembling TREC, which
have information need statements that can be employed to con-
dition LLMs. Further research could explore advanced prompting
techniques and compare our approach of using an LLM to generate
query variants from backstories with previous query simulation
methods (e.g., [4, 11]), which were used to generate query variants
from source documents.
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