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ABSTRACT
We investigated how users evaluate passage-length answers for
non-factoid questions. We conduct a study where answers were
presented to users, sometimes shown with automatic word high-
lighting. Users were tasked with evaluating answer quality, cor-
rectness, completeness, and conciseness. Words in the answer were
also annotated, both explicitly through user mark up and implicitly
through user gaze data obtained from eye-tracking. Our results
show that the correctness of an answer strongly depends on its
completeness, conciseness is less important.

Analysis of the annotated words showed correct and incorrect
answers were assessed differently. Automatic highlighting helped
users to evaluate answers quicker while maintaining accuracy, par-
ticularly when highlighting was similar to annotation. We fine-
tuned a BERT model on a non-factoid QA task to examine if the
model attends to words similar to those annotated. Similarity was
found, consequently, we propose a method to exploit the BERT at-
tention map to generate suggestions that simulate eye gaze during
user evaluation.
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1 INTRODUCTION
Search Engine Result Pages (SERP) commonly display an answer as
well as a list of retrieved documents. Much research has been con-
ducted on the formation of such an answer and also on ideal SERP
layout. Research on whether different answer presentation styles al-
low users to obtain information more quickly or accurately is more
limited and mostly considers answers on factoid questions which
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could be answered with relatively short snippets. Few works have
examined non-factoid questions, which often require a passage-
level answer. Do users look for the same words or facts when they
evaluate the answer to such a question? Does too much or too little
detail in an answer impact answer quality?

One exception is Qu et al.’s study, which employed crowdsourc-
ing to determine if workers could identify the correctness of an-
swers [25]. The researchers examined if identification could be
improved by automatic highlighting of specific answer words. The
results were inconclusive as Qu et al. did not consider what aspects
of an answer contribute to overall quality, or whether one answer
presentation style was more effective than another.

We seek to understand how users determine the correctness
of an answer by considering fine-grained evaluation criteria and
employing an eye-tracker. We compare different tracking metrics
on answers to non-factoid questions with or without highlighting.
Users were also asked to mark up important words in the answer
and provide feedback. We also analyse the attention of a BERT [10]
model fine-tuned on a non-factoid QA evaluation task. Although
many works have analysed the attention mechanism of different
Transformer models [6, 19, 31], we focus on comparing the model’s
attention with words annotated in the answer based on explicit and
implicit input. We chose the BERT model for our experiments due
to its success in the context of non-factoid question answering [22].

Our work investigates three research questions:

(1) How do people understand whether an answer for a non-
factoid question is correct? What features of an answer de-
termine overall answer quality, and is the evaluation process
similar across users and answers of different quality?

(2) Can automatic word highlighting improve the speed and
accuracy of users when determining answer correctness?

(3) Does the attention map of a Transformer machine learning
model assign weights to words in a similar way to user anno-
tated words? Can we use the weights to highlight important
words in passage-level answers to non-factoid questions?

The contributions of our paper are as follows.

(1) We demonstrate that user knowledge of an answer to a non-
factoid question influences perceptions of accuracy. The com-
pleteness of an answer is as important as correctness. Ac-
cording to user annotations and eye-tracking data, there is
agreement on the parts of an answer that contribute to cor-
rectness. Also, it is simpler for users to identify incorrectness
of an answer than conclude that it is correct.
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(2) We show that word highlighting in an answer for a non-
factoid question helps users to evaluate an answer faster
while maintaining the same accuracy.

(3) We analyze BERT model attention in a new way, directly
comparing the attention of a BERT model with human at-
tention (both explicit annotations and implicit eye-tracking
data). We propose an algorithm2 that constructs word high-
lighting from BERT model weights, and show that the new
highlighting has higher similarity with user annotations
compared to a baseline method.

2 RELATEDWORK
There has been extensive research on examining the generation
of answers to factoid questions, ranking of sentences, modeling of
community question answering sites, as well as identifying pas-
sages that answer complex questions [8, 15, 18, 24, 30, 40, 41]. Here,
however, we consider less common research on the display of an-
swers and user reactions to them.We also examine the utilization of
eye-tracking to understand how users interact with passage-level
answers to non-factoid questions.

2.1 Constructing and Displaying Answers
Before answers, there were snippets: fragments of a retrieved docu-
ment thatmatched a user’s query. The creation and value of snippets
was demonstrated over twenty years ago [32]. Later, the impact of
different snippet designs on user clickthrough was examined [7].
Results indicated the importance of users seeing all possible query
terms in the snippet so that they could judge the terms’ relationships
to the content of a page. Eye-tracking was subsequently employed
to gain clues on how snippets might be better constructed [3].

Building on Clarke et al. [7]’s work, Iofciu et al. [14] examined
two approaches to highlighting words in a snippet: query words in
bold, additional words in color. The work focused on queries with
ambiguous intent: words that identified intent were highlighted
in the snippet. Iofciu et al. used two approaches to word choice:
manual and automatic. Lab-based experiments with manual high-
lighting found users were slower and less accurate in their clicking.
Automated testing employed analysis of a query log to better iden-
tify ambiguous queries and the logs plus Wikipedia disambiguation
pages provided information on words to highlight. With this form
of highlighting, users were found to click accurately and faster
when highlighting was present.

Qu et al. [25] considered if highlighting a suite of words in an
answer would allow users to identify good or bad answers more
accurately. Utilizing crowd-source workers, the researchers found
that highlighted words appeared to influence the workers decision,
but results were not conclusive.

2.2 Eye-tracking and User Search Interaction
We detail two types of studies: those concerned with how users
interact with search results and those that use eye-tracking to
understand the design of snippets.

Granka et al. [11] showed that a user’s gaze fixated mainly on the
first and second ranks of a SERP. Lorigo et al. [21] considered the
impact of re-ranking results on a user’s gaze. Using eye-tracking to
understand the way that users scanned a SERP allowed refinements

Table 1: Three examples of questions used in the study.

TaskID Question
14579170 How to get a speeding ticket dismissed?
17172970 Why is my MRSA Staph infection continuing to relapse?
17636401 How to check for dead pixels when buying psp?

to rank learning algorithms, which improved effectiveness [16].
Eye-tracking also informed how users interact with SERPs [13, 37].

Cutrell and Guan [9] used eye-tracking to explore the impact of
the length of snippets on the speed and accuracy with which users
could complete tasks. They found that longer snippets helped with
informational tasks, but hindered navigational [4]. Savenkov et al.
[27] showed that highlighting of terms “help users find the answer
faster and draw their attention to results in the lower part of SERP”.
Lagun et al. [20] investigated the relationship between eye gaze and
the browser viewport in mobile search for answer-like results from
factoid questions. Some studies researched how direct answers to
frequent search queries, such as weather and news, influence user
behavior and how they contribute to satisfaction [5, 38].

To the best of our knowledge, there is no research on the use
of eye-tracking to understand how users interact with non-factoid
answers either presented on their own or in a SERP.

3 USER STUDY
We conducted a lab-based user study observing interactions with a
question answering system with/without automatic highlighting
of words. The study was ethically approved by RMIT University.

3.1 Tasks and Users
We randomly sampled 40 questions from the existing nfL6 dataset1 [25]
consisting of content from Yahoo!Answers. Table 1 shows three
examples of questions used in our study. Each question was paired
either with an answer selected as “best” by the (Yahoo!) asker of
the question or it was paired with an incorrect answer. This was
obtained by ranking answers using BM25 scoring [29], which were
re-ranked using a BLSTM model [8]. The distributions of answer
lengths is similar for correct and incorrect answers, with a mean
(and standard deviation) of 344.0 (152.3) and 419.7 (197.4), respec-
tively. We automatically highlighted words in the answers based on
a past approach [25], highlighting the five words with the highest
TF-IDF weights and all capitalized words (excluding those starting
sentences). The final QA dataset is available here2.

We recruited 32 candidates. After checking visual acuity (using
a Tobii Pro X2-60 eye-tracker) to ensure that the collected eye
movements would be of adequate quality, we chose 20 users: 15
females, 4 males, and 1 preferring not to disclose. All were either
students or university staff and had good knowledge of English,
7 participants in age-group (18-24), 5 in (25-30), 2 in (31-35), 4 in
(36-40) and 2 participants over 40. They spent around one and a half
hours on average on the tasks. After successful completion of 40
tasks, each user received a $50 (USD) gift voucher as compensation.

1https://ciir.cs.umass.edu/downloads/nfL6/
2https://github.com/Lurunchik/non-factoid-answer-highlighting
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3.2 Procedure
After calibrationwith the eye-tracker, each user was guided through
two training tasks. The users then completed the forty QA tasks,
each of which involved five screens:

(1) Question Reading: A question was shown for the user to
read. Pressing the space bar moved to the next screen (this
interaction has less impact on eye-tracking data than a click-
able button).

(2) Pre-task Questionnaire: The user needed to complete a
pre-task questionnaire about their interest, familiarity, and
perceived difficulty of the question on a scale of 1-5 (low-
high). They could re-read the question up to twice if desired.

(3) Answer Reading: An answer was displayed for the user to
read. Answers consisted of four sentences, no scrolling was
needed. Pressing the space bar moved to the next screen.

(4) Post-task Questionnaire: The user was asked to rate the
overall quality of the given answer, on a scale of 0-2, as well
as its correctness, completeness, and conciseness on a scale of
1-5 (low-high). The quality scale was enumerated as (0) An
incorrect answer to the question; (1) A correct but low-
quality (LQ) answer (e.g. a partial answer); and (2) A correct
and high-quality (HQ) answer to the question. Additional
user feedback could also be provided.

(5) Word Annotation: The answer was displayed again and
the user was asked to markup positive and negative words,
selecting them using a mouse. Users were instructed to mark
as positive those words that convinced them the passage
was correct; negative, those words that convinced users the
answer was of low quality or incorrect. Users could markup
any complete words, phrases, or sentences, but were advised
at the start to markup in a fine-grained manner.

3.3 Experimental Setting
Users were randomly divided into two equal groups. The first as-
sessed answers without automatic highlighting, the second was
shown an answer with highlighted words as described earlier. For
each question, its correct answer was shown to five out of ten users,
and its incorrect answer was shown to the other five. In total, each
answer was assessed by 10 users.

4 ANALYSIS OF ANSWER EVALUATION
Our user study resulted in data that includes user knowledge about
a question, answer quality, explicit word markup by users, and
implicit gaze on words based on eye-tracking. In this section, to
study how people evaluate answers to non-factoid questions, we
look at the quality rating, gaze metrics and differences between
explicit and implicit annotations by users.

4.1 Overall Answer Quality
We first consider overall answer quality ratings (0-2) made by users.
The average agreement for ratings between all pairs of users was
moderate, with a Cohen’s Kappa [1] value of 0.59.

To obtain a single quality label for each answer for subsequent
analysis, we took the majority vote across the ten users. In total, 43
answers were rated as incorrect and 37 as correct; of the latter
group, 22 were rated as LQ and 15 as HQ. Recall that we constructed

Table 2: Accuracy of rating corresponding to ground truth.

User Settings
Answer quality without highlighting with highlighting

all 0.72 0.71
incorrect 0.81 0.77
correct 0.62 0.64
LQ & HQ 0.58 & 0.67 0.54 & 0.8

our data based on the initial nfL6 collection to include forty correct
and forty incorrect answers; manual inspection showed the three
discrepancies between our users’ ratings and this dataset were due
to labeling errors in nfL6 collection. These were answers rated
as incorrect but marked as correct or vice-versa. All subsequent
analysis was based on this corrected grouping.

Table 2 shows the accuracy of user ratings, defined as the ratio
of answers labelled in accordance with the majority vote to the
total number of rated answers. The accuracy is higher for incorrect
answers and the most common mistake was when users rated a
correct answer as an incorrect one (28 false positives versus 91 false
negatives). For each answer that had at least one erroneous rating,
we studied the difference between users who made a mistake and
those who did not. We found the mean value of user perceived
difficulty of questions was higher for users who made a mistake
compared to those who didn’t (2.8 vs 2.5). Mean values of interest
and familiarity were lower for mistaken users (2.7 and 2.2, respec-
tively) vs (3 and 2.4, respectively). Note, however these differences
were not statistically significant. When considering user errors,
there are two types: false positives and false negatives. We will study
causes of these mistakes separately.

For the answers where false negative were made, there was a
statistically significant increase in perceived difficulty of a question
(𝑝 = 0.04) between users who mistakenly rated correct answers as
incorrect and users who rated answers correctly. Therefore, when
a question is difficult for a user, they tend to rate a correct answer as
incorrect probably because of a lack of information both in the answer
and in the user’s initial knowledge.

Regarding false positives, there is a statistically significant de-
crease in the user’s interest in the question between those who
mistakenly rated incorrect answers as correct and those who cor-
rectly rated them (𝑝 = 0.03). This indicates that users could be less
attentive while rated the question they are not interested in. Below
there is an example of a QA pair with very high variance of answer
quality ratings among users:

Q: I have a dsl connection another house member is using it

for a wireless connection how can I stop access 2 him?

A: Upgrade to dsl and tell them what you want to do or

upgrade to cable and get yourself a router. With a dial-up

connection, a router is a waste of time. It’ll work but if

you upgrade to dsl, chances are it won’t cost you any more (or

much more) than dial-up and they’ll give you all the equipment

you need. Plus you’ll have a much better connection with dsl

over dial-up.

Here, three out of ten users rated the incorrect answer as HQ.
All three users had an interest score of only one out of five. We
hypothesise that they were misled by the high keyword overlap



Table 3: Mean answers quality ratings (scale from 1 to 5).

correctness completeness conciseness
mean kappa mean kappa mean kappa

incorrect 1.57 0.25 1.53 0.11 1.85 0.16
correct LQ 3.2 0.01 2.82 -0.05 2.95 0.09
correct HQ 4.25 0.03 3.93 0.1 3.54 0.14

between the question and the answer. Notably, two of the users
only saw the plain text without highlighting.

4.2 Answer Quality Aspects
We also obtained ratings for three quality aspects: correctness, com-
pleteness, and conciseness. Table 3 provides detailed information on
the mean values and weighted Cohen’s Kappa agreement between
users for each aspect. The ratings suggest that even high quality
answers, which were chosen as the best on the Yahoo!Answers
website, can be greatly improved. There is fair agreement on the
rating of correctness for incorrect answers (the mean value is 1.57
with 0.25 Cohen’s Kappa). However, there is almost no agreement
for the rest.

Regarding the contribution of each answer quality aspect, both
correctness and completeness have high correlation (Pearson, 𝑝 <

0.001) with the overall quality rating, followed by moderate correla-
tion for conciseness. The values for the three aspects were 0.85, 0.79,
0.63 measured across all answers. Separately, within only incorrect
answers, the strongest correlation is correctness (0.72, 0.56 and
0.4). Within correct answers, correctness and completeness have
comparable correlation with overall quality (0.79 and 0.77, 0.54).

There are few cases when correctness was assigned a high rating
while completeness a low one, and we also found a high correlation
between correctness and completeness (0.817) for all answers and
0.818 for only correct ones, 𝑝 < 0.001. In comparison, correlation of
correctness with conciseness was only moderate overall (0.63), and
low within correct answers (0.47), 𝑝 < 0.001. This analysis indicates
an important relationship: the answer to a non-factoid question is
rated as correct only when it is also complete. For instance, the answer
contains all parts of an explanation, or different opinions, examples,
and so on. On the other hand, both completeness and conciseness have
little meaning when an answer is incorrect and they were rated rather
randomly by users.

To understand what could influence user rating, we investigated
the relationship between aspect score values and user perceptions
of question difficulty, familiarity, and interest. Cases with low and
high aspect score variance were analyzed separately, as sometimes
the rating of an answer does not require extra knowledge, e.g. when
an answer is obviously incorrect or correct. Below there is a correct
Q&A pair with low score variance of answer quality (the variance
is 0 overall and 0.1 for each aspects) but high variance (>2) of user
familiarity with the question.

Q: Why is ice less dense than water?

A: The molecules of water are closer together and constantly

moving, whereas the molecules of ice are in a crystal lattice,

meaning they’re in a rigid formation. When water freezes, the

molecules spread out a little more to form the crystal lattice.

Since density is mass over volume, and ice has takes up more

volume than water, the density of ice is lesser than that of

water. Which makes ice float on water.

Ideally, we want automatic QA-models to generate answers that
contain enough information to be understood and assessed cor-
rectly regardless of a user’s initial knowledge about the question.
For answers with higher quality score variance, we only found low
positive correlation (0.24 Pearson, 𝑝 < 0.05) between correctness
ratings and interest in the question. We found a low negative corre-
lation (-0.21 Pearson, 𝑝 < 0.05) between difficulty and conciseness.
Thus, we did not observe any definitive strong influence there.

4.3 Gaze Analysis
During reading, people make a series of rapid eye-movements called
saccades, while for some periods of time the eyes are relatively still,
called fixations. It is during the fixations that a reader acquires
information [39]. We therefore focus on fixations in our analysis of
our users. The text reading process also involves fixations that go
against the normal reading order of left to right and top to bottom
for English text. In such cases, people return back to already seen
parts of a text. Such fixations are called regressions.

From the raw eye-tracking data, we can obtain the duration of
fixations and their positions on the screen. We analyse fixations
that last for more than 60 milliseconds in all subsequent analysis,
following common practice [42].

Eye movements can be influenced by many factors including
reading ability [2], a person’s prior knowledge about a question [17],
and demographics [26]. However, it has been found that people fo-
cus their attention on words that are relevant to their question [27].
We studied word-level fixations, and for each word, we identified
all fixations whose coordinates fell into a word-sized bounding
box. The following gaze measures were used to study how our
users interacted with answers of different quality for a non-factoid
question:

• Total view seconds, the total time spent looking at a screen
with an answer.

• Mean fixation duration, the average length of fixations, per
user and per answer.

• Mean regression duration, the average length of fixations
which were regressions to a word, per user and per answer.

• Mean word fixations, the average number of fixations on a
word, per user and per answer.

• Mean word regressions, the average number of word regres-
sions in the answer, per user and per answer.

Figure 1: Correct/incorrect (top/bottom) answer heatmap.



Table 4: Gaze metrics for different answer quality levels.

Metric
Ans. quality Total view seconds Mean fixation duration Mean regression duration Mean word fixations Mean word regressions

among all users
all 17.62 174.89 174.8 61.95 24.28

incorrect 16.89* 173.62 172.1* 60.22 22.83*
correct 18.48* 176.37 177.93* 63.96 25.97*
LQ & HQ 17.39 & 20.08 176.5 & 176.17 179.75 & 175.256 60.61 & 68.87 25.31 & 26.93

without guiding highlighting
all 18.66‡ 181.8‡‡ 181.14‡‡ 63.12 25.44

incorrect 18.18‡ 180.22‡‡ 179.29‡‡ 61.81 24.46
correct 19.21 183.63‡‡ 183.25‡‡ 64.63 26.58
LQ & HQ 16.98 & 22.47‡ 182.26‡‡ & 185.68‡‡ 183.34‡ & 183.12‡‡ 59.02 & 72.87 24.11 & 30.2

with guiding highlighting
all 16.62‡ 168‡‡ 168.59‡‡ 60.87 23.21

incorrect 15.59*‡ 167.01‡‡ 165.11*‡‡ 58.63 21.2*
correct 17.81* 169.15‡‡ 172.67*‡‡ 63.48 25.54*
LQ & HQ 17.8 & 17.83‡ 170.74‡‡ & 166.8‡‡ 176.21‡ & 167.4‡‡ 62.2 & 65.36 26.52 & 24.09

without guiding highlighting (users with 100% labeling accuracy)
all 18.31 181.15†† 180.80†† 63.91 26.19

incorrect 18.92 179.61†† 178.29†† 64.05 26.91
correct 17.61 183.5†† 184.54†† 63.76 25.37
LQ & HQ 16.04 & 19.92 183.37† & 183.69†† 187.88†† & 180.33† 57.73 & 72.61 22.43 & 29.69

with guiding highlighting (users with 100% labeling accuracy)
all 16.92 167.59†† 165.93†† 61.88 24.1

incorrect 16.13* 165.5*†† 162.29*†† 60.71 23.167*
correct 17.82* 170.49*†† 170.98*†† 63.22 25.17*
LQ & HQ 18.47 & 16.92 171.65† & 169.35†† 173.64†† & 168.36† 62.81 & 63.79 27.26 & 22.24

* significant difference between correct/incorrect answer groups; ‡ difference between users shown/not shown highlighting;
† difference between 100% accurate users shown/not shown highlighting. One symbol 𝑝 < 0.05, two symbols 𝑝 < 0.001.

All results for these gaze metrics are shown in Table 4. The values
for total view seconds, mean fixation, and regression duration are
all lower for incorrect answers, which demonstrates that users
spend more time and effort to understand that an answer is fully
correct than that it is missing some information or is incorrect. Word
fixations and regressions, which have been shown in related work
to be indicators of relevance [12], are lower for wrong answers.
We tested the statistical significance of differences between metric
values for correct and incorrect answers using Student’s t-test.
Significant cases were marked in Table 4. Results were statistically
significantly different for total view seconds, regression duration,
and word regression counts. This finding is consistent with results
from Qu et al. [25] that people interact with good and bad answers
differently, and rate incorrect answers with less effort.

Typically, incorrect answers also have people gaze at more areas
of interest with lower average fixation duration compared to correct
answers. An illustrative example of gaze heatmaps for a who who
was not shown highlighted words is shown in Figure 1.

4.4 Words Annotated While Answer Rating
For factoid questions, which typically have short answers, a set
of important words for understanding if an answer is correct may
comprise of most or all of the answer text. On the other hand, it is
not obvious which parts of a passage-level answer for non-factoid
question help people to evaluate the answer correctness. Our study
users were asked to freely annotate positive and negative words and

sections of text in the answer. While they were rating an answer,
their gaze was recorded using the eye-tracker. In this subsection
we investigate the level of agreement between users regarding the
sets of words that were annotated for answer evaluation for both
explicitly marked up words, and words that were gazed at. We also
studied whether a user’s explicit annotations were similar to those
words as tracked from their gaze.

4.4.1 Explicit word annotation. Users were able to freely anno-
tate positive and negative words which influenced their decision
about the correctness of an answer. Only a tiny proportion of words
(0.02%) was annotated in opposite annotation from the final answer
rating. Correct answers were annotated with positive words, incor-
rect answers were annotated with negative words. Most opposite
annotations were positive words annotated in incorrect answers.
This suggests that correct answers that were rated LQ were gen-
erally missing information, rather than presenting incorrect facts.
The relative length of annotations words in correct answers was
statistically significantly higher than the length in incorrect ones.
This suggests that people struggle to identify the wrong parts of an
incorrect answer to a non-factoid question. There was a statistically
significant positive correlation between answer quality aspect rat-
ing and the relative lengths of annotations: 0.33, 0.29 and 0.46 for
correctness, completeness and conciseness respectively (Pearson,
𝑝 < 0.05).



Table 5: Overlap between explicit important annotation.

User settings
Answer
quality all without

highlighting
with

highlighting
between
2 settings

all 0.66 0.68† 0.7† 0.64
incorrect 0.65* 0.66†* 0.69† 0.62*
correct 0.68* 0.71* 0.7 0.66*
LQ & HQ 0.67 & 0.7 0.69 & 0.73 0.71 & 0.7 0.64 & 0.68

* significant difference between correct/incorrect answer groups;
† between users shown/not shown automatic highlighting (𝑝 < 0.05).

To calculate the agreement between annotated spans of text in
passages, we followed the approach of Qu et al. [25] and used the
overlap coefficient [35]:

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝐻1, 𝐻2) =
|𝐻1 ∩ 𝐻2 |

𝑚𝑖𝑛( |𝐻1 |, |𝐻2 |)
where 𝐻1 and 𝐻2 are unique words from the annotations of two
users. This metric allows us to compare annotations of different
lengths as some users annotated distinct words and others whole
sentences. Following Qu et al. [25], we excluded stopwords. We
calculated overlap only between positive words for correct answers,
and negative words for incorrect answers because of the almost
complete lack of opposite annotations.

Table 5 shows the mean overlap scores between user pairs, bro-
ken down by different user setting groups (columns) and different
answer quality ratings (rows). Overall, the agreement for correct
answers was higher, which was consistent with Qu et al. [25] and
means that users had good agreement between each other on the
words that were important for the identification of a correct answer.

4.4.2 Implicit word annotation. Using the eye-tracking data, we
can calculate the agreement between words that user annotated
as important implicitly, namely those that received more attention
based on gaze. Implicit annotation vectors for each user were con-
structed as follows. First, as a target number of annotated words
for each user, we used the number k of unique words in the same
user’s explicit annotation. Since the annotation lengths can also
vary substantially for different users, to have comparable results we
used the same overlap measure (Formula 4.4.1) that we used for the
calculation of explicit agreement. We hypothesised that important
answer words would receive more user gaze than others. Gaze on a
word was measured based on the amount of time that a user looked
at it (total fixation duration), and the number of regressions to this
word. While individual differences may lead users to view some
specific words for longer duration (for instance, rare or unknown
words), we conjecture that words that are of interest in relation
to the specific question being answered would benefit from more
consistent attention across users.

The top k words used for implicit annotation were extracted
first sorting by decreasing regression count, and then sorting by de-
creasing fixation duration to resolve ties. In Table 6, overlap scores
of implicit annotations are displayed. The agreement difference for
correct and incorrect answers is similar to explicit annotations and
the overlap for correct answer is statistically significantly higher.

4.4.3 Comparison of explicit annotation and user gaze. To investi-
gate how words explicitly annotated by users overlap with words

Table 6: Overlap score between implicit annotation.

User settings
Answer
quality all without

highlighting
with

highlighting
between
2 settings

all 0.59 0.67† 0.56† 0.57
incorrect 0.58* 0.65†* 0.56† 0.55*
correct 0.61* 0.7†* 0.56† 0.6*
LQ & HQ 0.62 & 0.59 0.72† & 0.68† 0.57† & 0.54† 0.6 & 0.59

* significant difference between correct/incorrect answer groups;
† between users shown/not shown automatic highlighting (𝑝 < 0.05).

that are implicitly determined to be important, we first filtered out
all stopwords, due to them being unimportant for comparison. We
then compared the explicit user annotations with the implicit anno-
tations. Since the lists were of the same length, we use the Jaccard
coefficient as a similarity metric. The first part of Table 7 shows the
mean Jaccard scores for all documents calculated between explicit
and implicit word lists for each user. Overall, although agreement is
not very high on average, there is still some intersection of words.
As explained previously, there are many factors that can influence
a user’s gaze. To account for individual noise, such as long fixations
on words that happen to be unknown for a particular user, we also
compared average user word annotation lists.

Average user word annotation lists (either explicit or implicit) are
created by taking the words from all individual lists (constructed as
described above), and sorting by decreasing frequency (reflecting
howmany users have a word in their individual sets). After that, we
select the top m most popular words, where m is the mean number
of words that were chosen for explicit annotating across all users.

The average similarity scores for all answers between the average
user word lists are displayed in the lower part of Table 7. The mean
lists for each user group were created only from lists of users from
that group. It can be seen that when the data from a greater number
of users is aggregated, the more similar the final lists are (Jaccard
coefficient between explicit and implicit mean lists is 0.361 for all
users, while in divided equal users’ parts it is only 0.309 and 0.328).
The overlap for averaged words is on average higher than at the
individual level.

The agreement between explicit and implicit annotating is higher
for correct answers. This could signify that users are likely to un-
derstand explicitly which words indicate that an answer is correct.
Conversely, their gaze is distributed more randomly when evaluating
incorrect answers, suggesting that there aren’t specific or consistent
phrases that flag the incorrectness of an answer. This is also sup-
ported by a higher number of areas of interest, and lower explicit
and implicit overlap scores, between focus words for different users
when dealing with incorrect answers.

5 IMPACT OF HIGHLIGHTINGWORDS
The highlighting of certain terms to guide users was intended to
assist in the evaluation of answers. In this section we first study
differences in the evaluation process between two groups: users
who were or were not shown highlighted words. Next, we com-
pare the similarity of automated guiding highlighting to explicit
and implicit user annotations. Finally, we study differences in the



Table 7: Similarity of explicit and implicit annotating.

User settings
Answer quality all without highlights with highlights

average of Jaccard coefficient for each user
all 0.284 0.321† 0.247†

incorrect 0.271* 0.306†* 0.235†*
correct 0.299* 0.339†* 0.259†*

Jaccard coefficient between "average user word list"
all 0.361 0.309 0.328

incorrect 0.337 0.304 0.301*
correct 0.389 0.315 0.36*

* significant difference between correct/incorrect answer groups;
† between users shown/not shown automatic highlights (𝑝 < 0.05).

evaluation between those answers where similarities between the
highlights and annotations were high and low.

5.1 Assessment Quality
By experimental design, users were randomly distributed into two
groups that had very little differences in demographics, education,
and English level. We also compared the responses to the pre-task
questionnaire items, namely the mean values of interest, familiarity,
and perceived difficulty regarding questions. The scores were con-
sistent between the two groups. Thus, we conclude that the main
factor that could influence their answer evaluation process was the
presence or absence of automatically highlighted words in an answer.

Table 2 shows that the overall accuracy of evaluation between
the two groups (with or without automatic highlighting of words)
is comparable. While users who saw highlighting evaluated high-
quality correct answers more accurately, they sometimes mis-rated
incorrect answers with low-quality correct answers. Regarding fine-
grained answer quality aspects, the difference of ratings between
the two groups was not statistically significant. In other words, we
can say that automatically highlighting words does not influence the
accuracy of assessment of non-factoid answers.

5.2 Important Word Annotation
The three last columns of Table 5 show the extent to which people
shown/not shown automatic highlighting agreed when marking a
set of important words in an answer, both within and between the
two user groups. There is good agreement between users within
their groups; on average, users who were shown highlighting have
slightly higher agreement to users who did not see it. The agreement
was the lowest between users in two different groups, especially, for
incorrect answers. Manually inspected cases showed that users who
saw highlighted words in an incorrect answer had a tendency to
annotate them as negative. It also explains higher agreement within
this group for incorrect answers. At the same time, these assessors
sometimes skipped annotating of those already highlighted words
in correct answers, which is supported by the fact that the average
count of annotated words in this group was lower than in the group
without automatic highlighting, 7.8 versus 11.0.

In contrast, the agreement of the implicit vector of important
words (the construction of which was described in the previous
subsection) for users in the group with automatic highlighting was
lower than in the group without highlighting (Table 6). This was a

counter-intuitive result as we expected users would pay attention to
the words which were specifically highlighted in the text. It appears
that users read highlighted words faster on average, and returned to
them less frequently, studying other words instead.

The agreement between explicit and implicit annotations in the
group with automatic highlighting was also lower than for the
group without. We can therefore conclude that, despite the fact
that automatic highlighting does not impact the accuracy of the
answer evaluation, it can influence what parts of the answer users
pay attention to during evaluation. However, as we stated earlier, we
could not find any significant differences in the correctness ratings
between the groups.

5.3 Differences In Gaze Metrics
We compare gaze metrics between the two different user groups.
As shown in Table 4, users from the groups with automatic word
highlighting rated answer quality while spending less time on the
answer screen. The difference between the two groups was sig-
nificant, as was the difference for mean fixation durations and
regression durations. While fixation and regression counts were
not significantly different between the groups, mean fixation and
regression durations and counts were lower for the group with
highlighting, which could indicate that these users required less
effort for answer evaluation. We also report all metrics for both
groups with exclusion of all assessment errors. The trends show
that users with automatic highlighted word rated an answer faster
and with fewer fixations and regressions even when considering
correct labeling only. This finding supports the hypothesis that high-
lighting important words in an answer for a non-factoid question
makes the evaluation process easier for a user.

5.4 Similarity of Highlights and Annotations
To investigate the similarity of automatic highlighting (based on TF-
IDF and capitalized words) and explicit or implicit user annotations,
and how this influences evaluation, we first need to construct a tar-
get user annotation vector. As users who saw suggested highlighting
are biased in their implicit and explicit word lists, we exclude such
users from comparisons for the current analysis. Moreover, since
the highlighting aims to help a user with evaluation, we only use
the feedback of those users who correctly rated answers; otherwise
we could end up with the misleading word suggestions. As an ex-
plicit or implicit user word annotation we used an "average user
word list", which was described in Section 4.4.3. In the remainder of
this analysis, we refer to these average user word lists, constructed
only over data from users who did not see automatic word high-
lighting, as "implicit target user annotating" and "explicit target user
annotating"

The first column of a top part of Table 8 shows the similar-
ity calculated as the Jaccard coefficient between automatic word
highlighting based on TF-IDF and explicit user annotations. The
similarity is the highest for high quality answers which means it
is mostly not capital or TF-IDF heavy words that allow people to
understand the incorrectness of an answer. However, as we pre-
viously showed, the agreement on words among users is higher
for correct documents as well. In the same way, we compared the
shown highlighting with implicit user annotations. The results are



reported in the first column of Table 8 on the bottom. Generally, the
similarity is higher than with explicit annotation and this difference
is statistically significant overall and among incorrect answers (Stu-
dent’s t-test, 𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 3.9, 𝑝 < 0.01). This could be explained
by the fact that users could not always explicitly identify (and an-
notate) the complete list of important words which they implicitly
paid attention to during the rating process. We observed this in the
previous subsection as there was a low agreement between explicit
and implicit word vectors for incorrect answers.

We further investigate how this similarity is connected with the
user’s speed of evaluation. As we have shown, users from the group
with automatic word highlighting evaluated answers statistically
significantly faster than users who did not see highlighting. We
found statistically significant weak negative correlation (Pearson
-0.27, 𝑝 = 0.02) between the total view time of these users and
the similarity of automatic word highlighting to the explicit user
annotations. We also found low negative correlation of the view
time with similarity to implicit words (Pearson -0.14, 𝑝 < 0.001).
For completeness, we checked the correlation between the Jaccard
scores and length of suggestions to reject the hypothesis that the
quality of automatic word highlighting depends on their length;
the correlation was not statistically significant (Pearson -0.05 , 𝑝 =

0.653). We also calculated the average similarity for the subset of
answers where total view time results were inconsistent with the
general trend (the outliers which were viewed longer by the users
who were shown an answer with automatic word highlighting).
Notably, their similarity with target explicit annotations for these
answers is slightly lower with the value of 0.254, versus 0.275 for
those answers that were rated more quickly by users who were
shown automatic word highlighting. However, this difference is
not statistically significant. We can conclude that the more similar
automatic word highlighting is to users’ annotations, the more helpful
it is for them when evaluating answers.

6 ANALYZING TRANSFORMER ATTENTION
The aim of this section is to understand the level of similarity be-
tween words obtained from an attention map of a Transformer
model [33] fine-tuned on the non-factoid question evaluation task
and words explicitly or implicitly annotated by users in our study.
Here we firstly explain how we extracted sets of important words
from Transformer model attention maps. After that, we give details
on the particular model we used. Finally, we compare Transformer
model attention with implicit or explicit user annotations and "base-
line" highlighting we used in our study.

6.1 Attention Construction
Self-attention assigns a weight (attention) from each word in a
sentence to each other word, which can be interpreted as word
importance and transformed into scores for a word highlighting al-
gorithm. In our case, we input the query and answer simultaneously
into a Transformer neural network, obtaining query-to-answer and
answer-to-answer attention maps. Then, we calculate the impor-
tance of each answer token with respect to question tokens by
averaging attention weights leading to this token from the ques-
tion. We compute answer-to-answer token importance in the same
fashion. Finally, we summed the aforementioned averages to form

the attention score for each token:

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒 (𝑡) =
∑
𝑞∈𝑄 𝑤𝑞𝑡

|𝑄 | +
∑
𝑎∈𝐴,𝑎≠𝑡 𝑤𝑎𝑡

|𝐴|
While our user study yielded data of a form appropriate for

training a model, the quantity of labels is insufficient; we therefore
use a pre-trained one, specifically a “large” uncased BERT model
with whole wordmasking [10], which has 24 layers, each containing
16 attention heads. The BERT model was chosen due to its success
in the similar task of a non-factoid answer ranking [22]. We study
the average and standalone performance of attention maps of the
last layer heads, as they have no shared parameters between them.

Given a BERT model, we constructed the input as [CLS] <ques-
tion> [SEP] <answer> [SEP], where [CLS] and [SEP] are special
tokens that indicate the beginning of the input and the separation
between the sentences, respectively. Using this form of input, we ob-
tained attention maps for each question-answer pair. We excluded
weights that were connected to the [CLS] and [SEP] special to-
kens, as they do not appear in user explicit or implicit annotation
vector, and Clark et al. [6] demonstrated that these tokens have
insignificant impact on the accuracy for most heads. We leveraged
the BertVis visualization tool Vig [34] to extract attention maps
from the model. Additionally, we wanted to infer the attention
score for word-level tokens, but the BERT model uses byte-pair
encoding as its tokenization method [28], leading to some words
being split into sub-words. Thus, we had to deconstruct the BERT
text representation by merging tokens starting with the special
symbol ’##’ and summing their attention scores to get an attention
score for the original word, as was proposed by Clark et al. [6]. The
final vector could be interpreted as an average importance weight
for every word in an answer.

To extract more informative attention maps, we fine-tuned the
base BERT model to the non-factoid QA evaluation task similar to
the one users in our study were asked to do. Given a QA pair from
the nfL6 dataset, the model had to predict if an answer was correct
or not. First, we excluded QA pairs that were used in our user study
since they also came from this dataset. Then, we randomly chose
1% of the rest as holdout test data, and divided the remainder into
training and validation data (80% and 20%, respectively). Then we
fine-tuned the model for 2 epochs reaching 0.96 accuracy on the
test set. After that, we discarded the last classification layer, and
used the remaining layers to obtain attention maps for held out
subset of QA pairs - the same as we used in our user study.

The word highlighting task can be formulated in a way similar
to our user study task as annotating n important words from an
answer for a non-factoid question. To construct automatic high-
lighting from BERT attention weights, we firstly need to predict
n. We chose the average count of words that were explicitly anno-
tated by users as the target number of highlighted words. However,
such annotations may not be available for new texts. Thus, we pre-
dicted word annotation counts using linear regression, with answer
length as the only feature (the correlation between the number of
highlighted words and answer length is 0.7, Pearson, 𝑝 < 0.001).

For a given answer, we therefore predicted n using regression,
and then selected the top-n words in the answer with the highest
attention scores. We used an average of attention maps from all
heads of the Transformer layer as the overall BERT attention.



Table 8: Similarity between model and user annotations.

Suggestion type
Answer quality shown TF-IDF base BERT fine-tuned BERT

Jaccard coefficient with user explicit annotations
all 0.266 0.276 0.312

incorrect 0.274 0.256 0.269
correct 0.261 0.299 0.363*
LQ & HQ 0.236 & 0.288 0.289 & 0.313 0.341 & 0.391

Jaccard coefficient with user implicit annotations
all 0.295 0.314 0.316

incorrect 0.299 0.292 0.278
correct 0.29 0.339 0.361*
LQ & HQ 0.274 & 0.314 0.347 & 0.328 0.372 & 0.346

* significantly different from TF-IDF (𝑝 < 0.05).

6.2 Comparison With User Annotations
To evaluate whether BERT and users in our study pay attention to
the same words, we calculated the Jaccard similarity with explicit
and implicit user annotations by the same way we did such compar-
ison with shown TF-IDF highlighting in Section 5.4. The results are
shown in Table 8. Overall, there is much better overlap with target
user annotating comparing to the TF-IDF baseline. The difference
between TF-IDF and fine-tuned BERT is statistically significant
for correct answers (𝑝 < 0.004). Differences for all and incorrect
answers are not statistically significant (𝑝 = 0.065 and 𝑝 = 0.83, re-
spectively). BERT attention similarity is higher compared to TF-IDF
for correct answers, and lower for incorrect answers. It appears that
weights for words signaling that the answer is incorrect could not
be obtained from the average attention of all heads. We investigate
this in the next subsection.

6.3 One Head Is All You Need
Previous research shows that in BERT models, only a small subset
of heads is important for the target task [23, 36]. Inspired by this, we
investigated whether we could use the attention map from a single
“best” head on the last layer to obtain a final score that is at least not
worse than from the average head approach reported earlier. Recall
that the performance of our method is different for incorrect and
correct documents; we therefore analyzed them separately. Since
the number of available documents is quite small (43 incorrect
and 37 correct), we used leave-one-out cross-validation for the
selection of the best head. For each document, we selected the best
performing head on all documents except the current one. Then we
calculated the similarity for that document using the selected head.
The comparison between best-head performance and averaged
attention score is reported in Table 9.

Table 9: Best-head Jaccard coefficient for fine-tuned BERT.

With explicit With implicit

Answers best head average best
explicit head best head average

incorrect 0.292
11 head 0.269 0.284

11 head
0.313
0 head 0.278

correct 0.371
13 head 0.363 0.366

13 head
0.381
5 head 0.361

Notably, for incorrect and correct answers there was only one
best head over all folds: head 13 for correct answers, and head 11
for incorrect answers. Six out of sixteen heads always perform
worse than the average. The performance with head 11 and head 13,
which give the best similarity with explicit highlighting, also give
the second-best similarity with implicit annotations. The improved
similarity for incorrect documents with head selection also becomes
higher than baseline TF-IDF highlighting: 0.292 versus 0.274 for
explicit incorrect, and 0.313 versus 0.299 for implicit incorrect. The
overall improvement is promising and relatively stable across folds
on average, indicating that, given explicitly annotated answers, we
can select the best head and improve the method scores.

6.4 Implications of Highlighting
From our findings so far, we can conclude that providing automatic
word highlighting accelerates the user rating of answer correctness
in the challenging task of non-factoid QA evaluation. Specifically,
it leads to lower total view time, fixation count, and regression
count. However, the automatic word highlighting proposed by Qu
et al. [25] only moderately correspond to the words that users
annotated as important, sometimes even misleading them in our
study. To improve over the baseline, we can consider the use of a
more complex algorithm that makes use of self-attention - a key
mechanism in state-of-the-art Transformer neural networks that
allows them to track dependencies between words. As we have
shown, highlighting based on the attention map of a fine-tuned
BERTmodel is more similar to human gaze and explicit annotations
and, hence, could be potentially used during the non-factoid QA
evaluation process or as highlighting in answer snippets on a SERP.

7 CONCLUSION
In this paper, we studied how users interact with answers of dif-
ferent quality levels that are presented in response to non-factoid
questions submitted to web search systems, examining important
words that are explicitly annotated by users, and words that are the
focus of user attention based on gaze from eye-tracking patterns.

Our first research question focused on the challenging process
of evaluation of a passage-level answer to a non-factoid question.
The results show that user’s interest in the question and perceived
question difficulty impact rating accuracy. Also, answers were con-
sidered to be correct only when they were also complete. Thus,
an answer to a non-factoid question should not only contain cor-
rect information but also give enough of it to cover most of the
question’s aspects, such as proper explanations, several opinions,
examples, and so on. Most of the answers selected as “best” from
the (Yahoo!Answers) CQA platform (that we used in our study) did
not satisfy users with low levels of knowledge about the question
topic. It should be taken into account when using CQA platform
data for non-factoid QA. According to user annotations, it is harder
for people to identify incorrect parts of a passage-level answer than
correct ones, which is supported by higher agreement between
explicit and implicit annotations of a user for correct answers. The
same holds for the agreement of annotations between users. This
indicates that people understand well why an answer is correct.
Conversely, for incorrect answers user gaze is distributed more ran-
domly, with a higher number of areas of interest and lower explicit



and implicit annotation overlap between users. Nevertheless, we
found that users spend more time and effort to understand that an
answer is correct than that it lacks some information or is incorrect.

The next research question addressed automatic highlighting of
important words in answers. The results demonstrated that it helps
users to rate answers more quickly and with less effort while main-
taining the same level of quality. However, highlighting changes
implicit and explicit annotations from users, drawing their attention
more to the words that are not highlighted. The overall similarity
of the TF-IDF highlighting we utilized in the study and explicit
or implicit user annotations is not very high. Despite that, cases
with higher similarity were evaluated faster than those with lower
similarity, suggesting that highlighting is useful when it models
user annotations well.

Our third research question was to study whether the attention
mechanism of a Transformer neural network assigns weights to
words similarly to explicit or implicit user annotations on important
words. The results of our experiments showed that the term high-
lighting, constructed from the weights of a fine-tuned BERT model,
is more similar to users’ annotations than the baseline method that
selects terms based on TF-IDF weights and capitalisation.

Overall, our findings and the suggested highlighting method can
be used to make the process of non-factoid QA evaluation easier.
This approach could also be used to investigate how modifying
the highlighting of snippets for answers for non-factoid questions
influences user interaction with search result pages overall, and
potentially improve that experience. While our experiments demon-
strated how term highlighting that is highly aligned with user ex-
plicit or implicit term annotation improves user evaluation, our
current experimental data cannot demonstrate whether TF-IDF or
BERT highlighting is more effective as there is needed a separate
user study, giving an avenue for future work.
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