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ABSTRACT

We outline a simulation-based study of the effect rapid population-
scale concept drifts have on Collaborative Filtering (CF) models. We
create a framework for analyzing the effects of macro-trends in pop-
ulation dynamics on the behavior of such models. Our framework
characterizes population-scale concept drifts in item preferences
and provides a lens to understand the influence events, such as a
pandemic, have on CF models. Our experimental results show the
initial impact on CF performance at the initial stage of such events,
followed by an aggravated population herding effect during the
event. The herding introduces a popularity bias that may benefit
affected users, but which comes at the expense of a normal user
experience. We propose an adaptive ensemble method that can ef-
fectively apply optimal algorithms to cope with the change brought
about by different stages of the event.

CCS CONCEPTS

• Information systems → Recommender systems.
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1 INTRODUCTION

People react to changes in the conditions of their life [25]. In re-
sponse to certain shifts, individuals may alter their purchasing
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habits, which could be copied by others through positive feed-
back [29, 69]. Examples of such changes include the stockpiling of
essentials during uncertain times [49].

Since Recommender Systems (RSs) – CF in particular – draw
on behavioral data, changes in the external environment may re-
frame human behavior impacting the performance of CF because
the altered behavior may not match what the system has learned
up to that point. Typically, CF models involve two phases:

• knowledge learning: the models learn user traits from past
interaction data;

• recommendation generation: the models yield a subset of
items as recommendations to match users’ predicted tastes.

Change in human behavior in the context of RSs is referred to as
concept drift [17, 36]. While such drift is well studied, population-
scale drifts as occurred during the COVID pandemic [13, 61] are less
understood. Many people changed their routine, buying different
products, or volumes of products, challenging the agility of com-
mercial supply chains [32]. Such changes can disrupt a CF model’s
ability to identify meta-users (i.e., coherent user profiles during
training). These changes require remodeling of the dynamics of
intra- and inter-user analysis over time. We examine the impact
of population-scale drifts on CF models. As it is difficult to find
datasets reflecting such drifts, therefore, we take a simulator-based
framework that we call Need Evolution SimulaTor (NEST).

Based on Maslow’s theory of user needs [43, 44, 64], we extend
a Markov chain model [11] with a hidden layer to model both
users’ observable preferences and inner need states. We embed
the model into a reinforcement learning (RL) based OpenAI Gym
framework [4, 30] to simulate individuals’ behavior at different
stages of a population-scale event. NEST disentangles CF training
from the discrepancy of user preferences by modularizing various
CF agents. By setting different types of “what if” scenarios, NEST
creates a sandbox environment to provide analysis and suggestions
for creators of RSs. We focus our evaluation on CF models within
e-commerce domains, i.e., users’ purchasing behavior. While such
a simulator cannot mirror user behavior with full fidelity, our goal
is to replicate psychological need-driven user behaviors found in
real RSs and to evaluate their macro-trend impact on RSs in a
parameterized interacting environment with a set of counterfactual
experiments1. The contributions of the paper are as follows:

1Code is available at https://github.com/ChenglongMa/NEST
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• An RL-based interaction model NEST for simulating user
need and behavior dynamics in a non-stationary context. The
model connects user needs, behavior, and RSs uniformly.

• A study of the multi-faceted impact of pandemic-like events
on classic CF models, including how models cope with such
changes based on a set of counterfactual experiments.

• An adaptive ensemble method to optimize the overall effec-
tiveness of the CF models assembly, which maximizes the
adaptability of RSs in a non-stationary environment.

2 RELATEDWORK

We consider “pandemic-like” events as events occurring unpre-
dictably by ordinary people, that have substantial impact on every-
day life, and result in population-scale effects on behavior. While
major events such as the pandemics of 1918 [28] and 2019 [68] are
examples of such events, our focus goes beyond such “once-in-a-
century” occurrences to events that occur several times in a life
span, that have a significant impact on people’s behavior patterns.
For example, events that are statistically fat-tailed, such as financial
crises [45, 65], are often unpredictable but have a broad and deep
impact on global population with a great likelihood of occurrence.

Many researchers have studied the impact of the recent pan-
demic on people’s needs and behaviors, e.g., diet, psychology, work,
entertainment. Di Renzo et al. [15] find that people feel more stress
and alter their habitual behaviors due to the fear of the virus. Yuen
et al. [69] identify psychological causes and social influence of
panic buying. Fink et al. [16] notice the popularity of “coronamu-
sic” which is widely used as solitary emotional regulation to meet
people’s socio-emotional needs.

2.1 Human Needs and Behavior

Maslow developed a hierarchy of 5-levels of human needs [43, 44]
classified intoPhysiological (Ph), Safety (Sf),Love&Belongingness
(LB), Cognitive (Co) and Self-Actualization needs (SA)2. Behavior is
motivated to achieve certain such needs; once the need is satisfied,
it becomes no longer active, until it is, eventually, brought back into
active state. Maslow argues that lower level needs must be met prior
to higher needs. However, extensive research [e.g., 11, 61] show that
the movement of needs is flexible and multi-directional, people can
better satisfy lower-level needs by improved lifestyle [11]. Alderfer
[2] argues that multiple needs may be active synchronously and if
the satisfaction of higher-level needs is suppressed, the desire for
lower-level needs will become intense.

The theory of social identity [62] suggests that individuals are
inclined to recognize themselves as belonging to a social group,
wherein they share similar values and preferences with other mem-
bers [29]. Chung [11] maps the 5-level model of needs to five states
in a latent space, in which the movements among needs are multi-
directional. We extend Chung’s idea to a hidden Markov Model
(HMM) that further considers the probability of specific emitted
actions from people. In the context of e-commerce, for instance,
actions are user purchases, with probabilities driven by user prefer-
ences on different products.

Changes in behavior can impair the performance of systems,
such as search engines, RSs, and decision-making. Suh et al. [61]

2There are different definitions of need at each level, we use those from Suh et al. [61].

carry out a population-scale study in search systems across all
levels of Maslow’s needs during the recent pandemic, finding that
expression of basic needs (e.g., food, water, shelter) exponentially in-
creased, while higher-level needs (e.g., fashion, education) relatively
declined, thus describing population-scale drifts with data-backed
evidence. Škare et al. [58] measure the impact of the COVID-19
pandemic on tourism systems, emphasizing the sharp decline in
the tourism economy and the slower than expected recovery. Gu
et al. [20] investigate the impact of the pandemic on purchasing
behavior in e-commerce systems finding the pandemic impels a
constancy and promptness of online buying behavior.

2.2 Collaborative Filtering

We distinguish two types of learning in CF: offline CF and online
CF. Offline CF (e.g., 𝑘 nearest neighbor (𝑘NN) and matrix factoriza-
tion (MF)) learns from “static” training data, which must be fully
accessible at a knowledge learning phase. Only then can the sub-
sequent recommendation generation proceed into predicting good
choices to be suggested to users [1, 17]. In contrast, online CF treats
historical user interaction data as sequences or streams. It does
not require complete training data at the knowledge learning phase;
instead, it constantly updates models as new observations arrive
and performs recommendation generation asynchronously [1, 17].

The changes caused by pandemic-like events not only affect
people’s behavior, but also affect the performance of CF models.
Compared to online CF, conventional offline CF models often fail to
capture the drift of interest from users [51]. Although some offline
algorithms are developed to incorporate temporal information in
data [e.g., 36], they are incapable of fitting unseen sudden changes
in user behavior until retrained on new observations.

2.3 Temporal Dynamics in CF

Changes in user behavior are a form of concept drift [66, 67], which
introduces new challenges to temporal dynamic modeling. Koren
[36] identifies different paradigms for temporal effects in user dy-
namics, and proposes a variant of SVD++ (TimeSVD) to capture
both persistent and transient signals in such behavior, balancing
long and short-term drifts. This approach does not consider item-
specific drift and suffers from cold start and data sparsity problems.
Rendle et al. [51] combine MF and Markov chain (MC) models to
build a personalized transition graph for prediction. Themethod can
learn the sequential evolution in user behavior by an extension of
BPR [50]. He and McAuley [22] model dynamic user preferences for
visual factors of fashion products based on a convolutional neural
network. Kang and McAuley [34] balance long-term vs. short-term
preferences and sparse vs. dense data by incorporating MCs and
recurrent neural networks (RNNs) in a self-attentive sequential
model. Recent research [e.g., 18, 39] considers temporal drift by
analyzing similarities among user trajectories (i.e., modeling users’
dynamic portraits in compatible long/short-term preferences).

2.4 Simulation in Recommendation

The sudden and unexpected changes arising from pandemic-like
events are rarely studied. People’s abrupt adaptive behavior is less
relevant to their past actions. At different development stages of
the event, individuals may show disparate behavior patterns. Shifts
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Need Behavior CF model
Environment

Independent variable Mediating variable Dependent variable

(a)

Need States

Recommendations

Choices

Preferences

Co Co SA Ph Sf
Events pre-event during-event

Co Co SA Ph Sf

(b)

Figure 1: a) Illustration of interactions between needs, be-

havior and CF models. b) Sequential interactions between

needs, behavior and the CF models in 5 bottom-up layers.

occur at the level of the entire population, where individuals imitate
and influence each other rather than moving in isolation. Such
events raise difficulties for researchers. The rarity of such events
results in a scarcity of data, making the collection of behavioral
patterns nearly infeasible. We therefore consider simulation as a
feasible approach to overcome these difficulties.

Simulation is common in RSs. Any offline recommendation ex-
periment is a simulation of a production RS; the better the experi-
ment, the more useful the observations will be. Additional layers
of simulation are often added. For instance, null hypotheses can
be simulated by randomization of variables of interest, e.g., by ran-
domly swapping rating values between user-item pairs in the data,
we may simulate probabilistic independence between the rating
count and the average rating value of items [5, 7, 46]. The depiction
of RSs as a one-shot recommendation round captures only a highly
partial side of reality. The field is moving beyond this limited view,
to an understanding of recommendation as a continued cyclic rela-
tionship between RSs and users, where feedback at each step adds
to the inputs available to the RS in the next step [52].

Ciampaglia et al. [12] investigate the impact of social conformity
on the quality of user choices in a simulation where users, their
tastes, attention, decisions, are synthetic along with items and item
quality. Based on a variation of multi-armed bandits (MAB), Schmit
and Riquelme [55] propose a model to simulate users’ interaction
with RSs, evaluating RSs with respect to the feedback loop. Based
on this, Chaney et al. [10] examine how feedback loops in RSs
cause high homogeneity and low utility of users. However, both
of them consider static user preference only and ignore change
over time. Recently, Rohde et al. [52] and Ie et al. [30] proposed RL-
based simulation environments (i.e., RecoGym, RecSim) wrapped
in the novel OpenAI Gym framework [4], which facilitates the RL
algorithm design and analysis of user behaviors.

In this research, we consider the reverse effect described above,
where macro-trends in population dynamics influence the reactions
of RSs and the qualities of recommendations.

3 TERMINOLOGY AND DEFINITIONS

We start from the relationship among user needs, user behaviors,
and user interactions with CF models. As shown in Fig. 1a, users’
latent need state is an independent variable. The observable user
behavior (e.g., purchasing and feedback) acts as a mediating vari-
able while the recommendations of CF models are the dependent
variable. We deduce our conclusion from the premise that users’
needs, behaviors, and preferences on items are strongly correlated,
as RSs can only estimate preferences of users based on the behavior
they explicitly exhibited. Fig. 1b is a detailed example of Fig. 1a.
During the pre-event stage, the CF model can fit users’ prefer-
ences effectively. However, the occurrence of a sudden unexpected
event first disrupts the latent need model, and a degrading cascade
reaction follows in the interactions between users and the RS. We
explain this in greater detail in the next subsections.

3.1 User Needs and Preferences

Given a RS, there are a finite user set U and an item set I. The
average user 𝑢 ∈ U will explore their surroundings. In the context
of RSs, this can be characterized as:

(1) human need systemN , a latent discrete space of needs states,
that we represent using Maslow’s 5-level needs, i.e., N ⊆
{𝑃ℎ, 𝑆 𝑓 , 𝐿𝐵,𝐶𝑜, 𝑆𝐴}. The system evolves as a holism, inwhich
a new need 𝜂𝑡 ∈ N is active or dormant depending on the
previously satisfied need 𝜂𝑡−1, i.e., need 𝜂 ∼ Pr(𝜂𝑡 | 𝜂𝑡−1);

(2) behavior pattern P, an action space representing preferences
from users inU for items in I. Amotivation policy 𝜋𝑚 : N×
(U,I, 𝑡) → P maps a need state to a prior distribution of
preferences for items inI at time 𝑡 . Then the next observable
preference will be conditional on the current latent need
state, i.e., preference 𝑝 ∼ Pr(𝑝𝑡 | 𝜂𝑡 ).

The private preferences of users are their inner incentives of
decision-making while their circumstances and the opinions of
others constitute external incentives. Furthermore, the expressions
of users’ private preferences in the form of recommendations will
in turn affect others’ decisions via a feedback loop.

3.2 User Behavior

A user 𝑢 reveals his/her preferences P𝑢 to a RS through implicit
(e.g., view, purchasing) and explicit (e.g., rating) actions. Mean-
while, the system perceives and learns their actual latent needs.
The system verifies its assumptions by presenting slates of per-
sonalized recommendations and observing users’ feedback on the
slates. Let 𝑐𝑡 ∈ I be a recommended item consumed (purchased,
clicked, etc.) by user 𝑢 at time 𝑡 , and let �𝐻 (𝑡) = [ℎ1, ℎ2, · · · , ℎ𝑡 ],
with ℎ𝑡 = (𝑢𝑡 ,P𝑡 , 𝑐𝑡 ), be a history of user engagement with recom-
mended items (note that need states N are unobservable to RSs).
A recommendation policy 𝜋𝑟 : �𝐻 (𝑡 − 1) × (U, 𝜋𝑚, 𝑡) → S𝑡 maps a
history of past preferences to a slate of recommended items [30],
where S𝑡 ∼ Pr(S𝑡 | I, �𝐻 (𝑡 − 1)).

The behaviors in the logged data can be viewed as a signal of
users’ private preference subjoining their implicit perception of
product quality. And the quality of a certain item can be the con-
vergence of others’ beliefs on its attributes [31, 55]. This coincides
with the findings of Smith and Sørensen [59] that individuals make
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decisions subject to their endowed characteristics and observation
of others’ behaviors. Technically, the resulting feedback of such
behavior is a combination of an individual preference 𝑝𝑡 and the
perceived quality of the selected item 𝑞𝑡 at time 𝑡 , i.e., 𝑟𝑡 = 𝑓 (𝑝𝑡 , 𝑞𝑡 ),
for a certain function 𝑓 – in our experiments, we take the convex
combination 𝑓 (𝑝𝑡 , 𝑞𝑡 ) = 𝑝𝑡 + 𝑞𝑡 + 𝜀𝑡 , where 𝜀𝑡 represents random
noise, but this is a modular choice in our framework. Note that, as
we focus on the changes from users’ perspective, we assume the
quality of items does not change over time, i.e., 𝑞𝑡 = 𝑞.

3.3 User-CF Interactions

Suh et al. [61] identify boundaries between changes in the develop-
ment of the COVID-19 pandemic. Inspired by this, we identify three
stages in the development of a pandemic-like event: pre-event to
represent the normal days prior to the event; during-event to rep-
resent the time range from the beginning to the end of the event;
post-event to represent the period after the event subsides. The
setting can be further subdivided intomore stages to depict different
phases of an event.

Fig. 1b illustrates with a toy example how the policies 𝜋𝑚 and
𝜋𝑟 operate over time. The Events layer describes the stages in the
evolution of the outlier event. Correspondingly, the Need States

layer shows people’s dominant needs at different event stages, i.e.,
growth-based needs (e.g., Co, SA needs) dominate the pre-event
stage while they yield to basic needs (e.g., Ph, Sf needs) to react to
the surprise situation. The Preferences layer represents the preferred
items for the user to meet his/her needs shown in the Need States
layer driven by policy 𝜋𝑚 . The Recommendations layer at the top
demonstrates the slate of recommendations generated by policy 𝜋𝑟 .
Finally, back to the Choice layer, it shows that the user makes the
final decision combining the recommendations and his/her own
preference. Therefore, the estimated recommendation score 𝑟𝑢𝑖𝑡 of
item 𝑖 at time 𝑡 is a real-valued function of {(𝑟𝑢𝑖 , 𝑡) : 𝑡 ∈ 𝑇 } based
on the policy 𝜋𝑟 ; 𝑟𝑢𝑖 is the integrated rating (e.g., feedback) of user𝑢
on item 𝑖 . Finally, the decision 𝑐𝑡 of the active user at time 𝑡 is drawn
from the probabilistic combination of external recommendation
scores and the inner dynamic user preference, i.e.,3

𝑐𝑡 ∼ Pr(𝑟𝑡 + 𝑝𝑡 ). (1)

User decisions and feedback further participate in the cycle of the
recommendation generation, and their need states N update once
they complete the transaction and gain the utilities accordingly.

If the output of policy 𝜋𝑚 is stable or only mildly drifting, policy
𝜋𝑟 will generate expected recommendations. Otherwise, if users are
in a high-velocity N space, the RS may not keep up with the speed
of change as it can only observe the past behavior that the user
explicitly exhibited. In that case, recommendations will lag behind
the user’s current need state. During a pandemic-like event, this
deviation is more obvious and thus the performance of CF models
can be heavily impacted.

4 METHODOLOGY

As there are no representative behavior samples in existing datasets
(e.g., MovieLens [21], Amazon reviews [48]), we propose the NEST
model based on the OpenAI Gym framework [4], which supports

3We may omit the subscripts of 𝑢 and 𝑖 for readability when there is no ambiguity.
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Recommender Recommendation 
Slate

User Observable 
Preferences

User Latent NeedSample Users

User Choice Model

User Need System

User Feedback

Item Quality

Next Need

Update

New Preferences

Figure 2: Modules in NEST, including an item model (blue),

a need-HMM (green), a user-choice model (yellow), a user-

feedback model (orange) and a recommender model (gray).

CoLBSf SAPhNeed States

Preferences pt1~ Pr(item|Sf )

t1
t1~ Pr(Sf |SA) t0t11~

Figure 3: The illustration of need-HMM. The yellow trajec-

tory shows that one’s need shifts from SA to Sf at time 𝑡1 and
thus the sanitizer becomes his/her preferred item.

sequential evaluation for online CF models and synthetic data gen-
eration for offline CF models. Our models represent the foregoing
interaction problem within an RL environment. The main compo-
nents of our model are shown in Fig. 2. The pluggable recommender

model supports various Gym compatible RL-based agents. It in-
teracts with the other modules by learning the observable user
preferences and the item quality, recommending slates of items to
users.

4.1 Item Model

The item model samples items drawn from a prior distribution char-
acterizing their qualities. The quality feature can be interpreted
as a fusion of consumer reviews for an item [31]. We assume the
recommender agents can collect the quality information from sta-
tistics, which is thus observable to the agents and available for
recommendation generation. In NEST, the quality is modeled and
drawn from a normal distribution, i.e., 𝑞𝑖 ∼ N (𝜇𝑖 , 𝜎2𝑖 ). The number
of items 𝑛 = |I | is also a parameter of the item model. The item
model parameters are thus a triplet (𝜇𝑖 , 𝜎𝑖 , 𝑛). Particularly, we set
𝜇𝑖 = 0 and 𝜎𝑖 = 1 in our experiments.

4.2 Need-HMM

Based on the of work of Chung [11], we propose a user need tran-
sition model (need-HMM) to describe the evolution of individuals’
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needs and the dynamic preferences given certain need state. Need-
HMM is a time-inhomogeneous hidden Markov process that gen-
erates a set of discrete probabilistic preferences on recommended
items given the user’s hidden need state at each time point. It is
characterized by a tuple (N ,S,A, E) where, again, N is the hidden
need system; S is a slate of recommended items, S ⊆ I; A is a
transition probability matrix describing the movements of the need
system. The probabilities may vary over time; E is an emission
probability matrix representing the dynamic preferences of a user
on slate S.
Human Need System. Need-HMM treats the human need system
N as a probabilistic holism consisting of different levels of need
states, 𝜂 ∈ N ⊆ {𝑃ℎ, 𝑆 𝑓 , 𝐿𝐵,𝐶𝑜, 𝑆𝐴}, which are unobservable to
recommender agents. According to the representative theories in
behavioral sciences [2, 43], the evolution within the need system are
holistic and changes in any state can cause concomitant reactions
in other states. For example, once a user’s basic needs are met,
their drive towards other needs changes accordingly (e.g., keen on
knowledge acquisition and less inclined towards grocery shopping).

Transition Probability Matrix. The movements among need states
are probabilistic following a statistical pattern, which is described
in a prior transition probability matrix A:

A[𝑥,𝑦] = Pr (𝜂𝑡+1 = 𝑦 | 𝜂𝑡 = 𝑥) , (2)

where 𝜂𝑡 (resp., 𝜂𝑡+1) is the need state at time 𝑡 (resp., 𝑡 + 1). The
need states are equipped with the Markov property as people focus
on their predominant need and the most urgent desire. Thus, their
current state mainly depends – as a simplification, only depends
– on the immediately preceding one, not earlier ones. Besides, the
movements are multi-directional and people can potentially switch
to lower needs even they are in a higher need. Meanwhile, the
transition probabilities in A are inhomogeneous in time as people’s
inner status may be suddenly shifted due to an upheaval in the
external environment, e.g., the occurrence of COVID-19 pandemic.
We set different transition matrices for different event stages, e.g.,
A𝑝𝑟𝑒 ,A𝑑𝑢𝑟𝑖𝑛𝑔 and A𝑝𝑜𝑠𝑡 . According a neuroscience theory [42], A is
drawn from normal distributions. Specifically, the initial parameters
of A𝑝𝑟𝑒 and A𝑝𝑜𝑠𝑡 are estimated based on user behaviors shown in
Amazon reviews data [48], while A𝑑𝑢𝑟𝑖𝑛𝑔 is skewed to basic needs
according to the findings of Suh et al. [61].

Observable Preferences on Slates. People’s preferences on items are
driven by their inner need states. We premise users are unable to
collect all information of items in RSs before making a decision. Peo-
ple’s behavior tends to be rationally bounded, in that a satisfactory
solution is sought, rather than the optimal one [57]. Self-assessment
of inner needs is usually imperfect and inaccurate, whereby the
output of need-HMM (i.e., user preferences on items in the slate S)
follows probabilistic patterns rather than deterministic assertion.

Emission Probability Matrix. We use an emission matrix E to de-
scribe the output of need-HMM. Conditional on certain need state,
the model emits statistical preference distributions for items in S.
It facilitates the decision-making process in the simulation that the
preference is drawn from the emission probabilities:

𝑝𝑖𝑡 ∼ E[𝜂, 𝑖] = Pr(𝑐𝑡 = 𝑖 | 𝜂𝑡 = 𝜂). (3)

As shown in Fig. 3, the model contains 5 hidden states correspond-
ing to the 5 levels of needs defined in [43, 61]. If the initial need state
𝜋𝑚0 is given, need-HMM can predict the need states for successive
time periods. Accordingly, we can dynamically and sequentially
generate probability distributions of users’ preferences.

Need-HMM is the core module in NEST upon which we can sim-
ulate the dynamics of user preference during different event stages
by manipulating the transition matrix, and observe the reactions of
CF models behind the sudden changes.

4.3 User Choice and Feedback Model

When interacting with the simulation environment, the plugged
recommender will recommend a 𝐾-sized slate of items to a user at
each epoch. The consumption decision of the user is determined
by the choice model. When the recommendation slate is delivered,
the user chooses items based on their private need (which appears
as preferences for items) and recommendation scores. It is worth
mentioning that, to make the simulation robust and consistent with
the need-HMM emission, the choice policy is probabilistic rather
than deterministic [40], i.e., Eq. (1).

Once an item is consumed by a user, they produce feedback on
the consumed item. The feedback model postulates the rating is
a convex combination of the user preference at that time and the
perceived quality of the selected item, i.e.,

𝑟𝑢𝑖𝑡 = 𝑓 (𝑝𝑢𝑖𝑡 , 𝑞𝑢𝑖 ) = 𝛼 · 𝑝𝑢𝑖𝑡 + (1 − 𝛼) · 𝑞𝑢𝑖 + 𝜀𝑡 , (4)

where 𝛼 balances self-need-driven and crowd-opinion-driven feed-
back depending of how self-sufficient or herd-influenced the user
is. In our experiments, we set 𝛼 = 0.5 to avoid overly subjective
hypotheses, but this can be further explored as future work on
NEST; 𝜀𝑡 is an additional random error drawn independently from
aGaussian noise distribution 𝐸 ∼ N (𝜇, 𝜎2), where 𝜇 = 0 and𝜎 ∈ R+.
Finally, the user need state updates after each transaction.

4.4 Recommender Model

NEST can also be treated as a dynamic Bayesian network over tra-
jectories of user need evolution, recommendations and interaction
with RSs [30]. It can factorize over time horizon 𝑇 as:

Pr(𝑝1, · · · , 𝑝𝑇 , 𝑐1, · · · , 𝑐𝑇 ,S1, · · · ,S𝑇 )

=
∑

(𝜂1, · · · ,𝜂𝑇 )

[
Pr(𝜂0) Pr(S0) Pr(𝑐0 |S0, 𝜂0)

𝑇∏
𝑡=1

Pr(𝑝𝑡 |𝜂𝑡 ) Pr(𝜂𝑡 |𝜂𝑡−1) Pr(𝑐𝑡 |S𝑡 , 𝑝𝑡−1) Pr(S𝑡 |I, �𝐻 (𝑡 − 1)) Pr(I)
]
,

where Pr(𝑝𝑡 | 𝜂𝑡 ) Pr(𝜂𝑡 | 𝜂𝑡−1) is the need-HMM with motivation
policy 𝜋𝑚 , Pr(𝑐𝑡 | S𝑡 , 𝑝𝑡−1) is the choice model, Pr(S𝑡 | I, �𝐻 (𝑡−1))
is the recommendation policy 𝜋𝑟 as aforementioned.

Since NEST is built on top of the OpenAI Gym framework, it
can work seamlessly with various RL agents designed for this
framework, such as Deep Q-Learning [47], or Implicit Quantile
Networks [14]. However, as we focus on the impact of macro-trends
in population dynamics on RSs, we apply vanilla RL agents in this
paper. Besides, to restrain the feedback loop issue [55], we let the
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Figure 4: The Adaptive Ensembles Model

agent take the empirical averages over time horizon 𝑇 as the rec-
ommendation score, i.e.,

𝑟𝑖𝑡 =
1

𝑇

𝑇∑
𝑡=1

𝑟𝑖𝑡 . (5)

4.5 Synthetic Data Generation

To enable offline CF model evaluation within NEST, we set up a
static synthetic dataset generation strategy. We add a logging layer
in the simulator, which can aggregate relevant statistics pertaining
to these interactions for traditional offline CF training. We take
snapshots of the running logs of NEST as the training data for
offline CF models. For example, when users interact with NEST in
each epoch, we log user id, the consumed item, its corresponding
rating, timestamp of consumption and their current need state
label. Like in the real system, we store the static dataset and share
it with offline CF models. To alleviate the feedback loop or other
effects on user behavior caused by RSs, we purposely keep the
recommendations “vacuous”, i.e., the recommendermodel generates
random recommendations in slates. Therefore, users choose items
based on their preferences only, and Eq. (1) of the choice model
becomes:

𝑐𝑡 ∼ Pr(𝑝𝑡 + 𝜀𝑡 ), (6)

where 𝜀𝑡 is an additional noise variable.

4.6 Adaptive Ensembles

In the context of the pandemic-like event, population-scale concept
drifts are widely observed in CF-based RSs. Generalizing and up-
dating the learning algorithms from the time-evolving data present
a challenge to CF models. The evolving data can be interpreted as a
mixture distribution of target concepts. Ensemble learning has been
proved as an effective mechanism in this case [17], in which each
candidate algorithm models a target concept respectively. To adapt
to the drifts, we propose an Adaptive Ensembles (AE) A/B testing
environment inspired by Cañamares’ work in [6] to optimize the
overall effectiveness of the assembly. The ensembles are built upon a
Thompson Sampling based MAB environment and integrate several
widely used CFmethods (e.g.,𝑘NN,MF) and non-personalizedmeth-
ods (e.g., popularity-based methods, average-rating-based methods)
into the candidate pool𝐶𝑎 . Each individual model serves as an arm

Table 1: Need Categories and Amazon Review Datasets

Need Category Amazon Datasets Examples

SA Arts Crafts and Sewing; Musical Instruments; Sports and Outdoors

Co Books; Industrial and Scientific

LB Gift Cards; Pet Supplies

Sf Tools and Home Improvement; Patio Lawn and Garden

Ph Grocery and Gourmet Food; Clothing Shoes and Jewelry

-1

Training Set

100 1 2 3 4 8 9Test Set

process of adaptation

pre-event

during-event10 epochs

-9-10

…

…

…

…

Figure 5: The illustration of Iterative Evaluation.

Each column is one iteration (i.e., one snapshot of NEST) of

training data and test data. From top to bottom, it logs in

chronological order. Each iteration contains 100 epochs in

training data and 20 epochs in test data.

and the bandit learns their contribution progressively in the non-
stationary environment (Fig. 4). Specifically, the bandit maintains
a beta distribution B(𝛼𝑎, 𝛽𝑎) as the posterior reward for each arm.
The parameters 𝛼𝑎 and 𝛽𝑎 indicate the number of times to achieve
the best and worst moving recall for CF model 𝑎. The bandit pulls
the arm 𝐶∗

𝑎 (𝑡) probabilistically drawn from their beta distribution
𝜌𝑎 ∼ B(𝛼𝑎, 𝛽𝑎) and outputs a weighted average of the individual
predictions. We evaluate the moving precision of its output as the
reward and give feedback to the bandit. The bandit update the beta
distribution for next epoch from an iterative training process in the
context of pandemic-like events.

5 EXPERIMENT

We use a semi-parametric synthetic data generated by the NEST
framework. For different stages of an event, we sample from dif-
ferent data sources. Particularly, for pre-event and post-event
stages, we take the seeds from various categories of Amazon re-
views datasets [48] and match them to user need categories [61],
as shown in Table 1. We purify and pooling 10,000 users who have
revealed interactions across all 5-level needs; and then construct
the initial need states and transition matrices A𝑝𝑟𝑒 and A𝑝𝑜𝑠𝑡 for
sampled users in the synthetic datasets. For during-event stage,
we extract user need distributions from Suh et al. [61]’s outcome
and estimate the transition matrix A𝑑𝑢𝑟𝑖𝑛𝑔 .

5.1 Evaluation Mechanism

By setting different hyperparameters in NEST, we simulate scenar-
ios in a non-stationary context for both online and offline CFmodels.
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Figure 6: Counterfactual results of ranking accuracy of CF models running in different events

We design a set of counterfactual experiments to validate the output
of the NEST framework and verify the following hypotheses:

H1. CF models fail to generate high-quality recommendations in
pandemic-like events of different intensities.

H2. Temporal based models outperform other CF models in
pandemic-like events.

H3. Users who are not affected by the event will receive better
recommendations.

Sequential Evaluation. The online CF models are trained in a
sequential environment. We simulate 1000 users and 1000 items4

with 30,000 epochs in the environment. The epochs are divided
into three 10,000 event stages. The recommender agent collects
ratings from users as rewards, which combine the qualities of items
and preferences of users, i.e., Eq. (4). Then it generates slates of
recommendations ranking by the scoring function Eq. (5). We apply
the proposed preference-based natural exploration strategy [3] into
NEST following Eq. (1). After each transaction, users will update
their need states. User preferences may shift in different event
stages. Therefore, users are motivated to explore new items and
find the suitable choice synchronously. The impact of changes in
user behavior on CF models can be demonstrated by plotting the
real-time precision and popularity of selected item (Fig. 9).

Iterative Evaluation. As offline CF models are trained on static
rating matrix data and can only be retrained regularly, we deploy
an iterative evaluation strategy, as shown in Fig. 5.

We define the dissemination magnitude of the event in differ-
ent iterations. We set the timing of occurrences of the outlier
event, which divides the horizon into two event stages (i.e., pre-
and during-event) and varies the proportion of normal behav-
ior and affected behavior in the training dataset. At iteration 0,
we fit the algorithms on users’ pure normal behavioral data (i.e.,
pre-event data) and measure the qualities of recommendations
on their during-event data. In the subsequent 10 iterations, we
iteratively bring the event forward by 10 epochs but keep the total
data volume the same so that the testee model can feed on different
proportional behavior data. At the appointed epoch, we simulate
the intensity of the pandemic-like event from different perspectives:

(1) We alter the direction of the skewness of the time inhomo-
geneous transition matrix A𝑑𝑢𝑟𝑖𝑛𝑔 of users to control the
number and size of herds formed.

4We also test different sizes of user and item sets. They show similar results, thus we
demonstrate only one set of experimental results.
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Figure 7: Diversity of recommendations

(2) We vary population sizes affected by the event to control
the scale of herds formed. The adaptation of CF models may
have different influence on different types of users.

(3) We hypothesize that users have different rates of adaptation
to the event. Some users may be more sensitive to changes
in the external environment, while others less so.

We report the evolution of the recommendation quality across
the iterations upon different settings. As a counterfactual com-
parison, we set 10 anterior iterations (labelled between [−10,−1])
where the training set and test set are both stationary data.

We use 20 CF baselines from both rating prediction and item rank-
ing tasks: Temporal Aware: TimeSVD [36], RNN4Rec [26], Caser [63];
Conventional: User-𝑘NN [60], Item-𝑘NN [54], SlopeOne [38], SVD [37],
SVD++ [35], BPR [50], LDA [19], RBM [53], pLSA [27]; Advanced:
RSTE [41], SocialMF [33], NeuMF [24], CFGAN[9], LightGCN [23];
Non-personalized: MostPopular, ItemMean, Random.

We use metrics to examine multiple aspects of the quality of
recommendations: Predictive AccuracyMetrics: MeanAbsolute Error
(MAE) and Root Mean Square Error (RMSE) [56]. Rank Accuracy
Metrics: Precision@𝑘 , Recall@𝑘 , F1@𝑘 and𝑛DCG@𝑘 [56].Diversity
Metrics: We define two dimensions of the diversity [8]: intra-user
diversity (e.g., Mean Intra User Distance(MIUD)) and inter-user

diversity (e.g., Gini index).
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Figure 8: Evaluation of baselines on different user groups

5.2 Experiment Results and Analysis

As we evaluated plenty of baseline algorithms, to show their per-
formance changes more clearly, we applied a Gaussian filter trans-

formation (𝑔(𝑥) = 1√
2𝜋𝜎

𝑒−𝑥2/(2𝜎2) , where 𝜎 = 2) on their results.

Owing to spatial confined, we combine some different metrics that
can lead to the same conclusion, e.g., we use Precision@10 to rep-
resent predictive and ranking accuracy performance.

5.2.1 Quality of Recommendations in Events of Varying Intensities.

To verify Hypothesis 1 and 2, we simulate events from 3 perspec-
tives: 1) the typical pandemic-like events, i.e., users show population-

scale sudden drifts in their behaviors; 2) the events of non-population
scale sudden drifts, where users shift to various dominant need states
at during-event stage; 3) the events of population scale gradual

drifts, where population shift to new need states in different adap-
tation rates. The results (Fig. 6) show that

(1) Most baselines perform solidly and personalized CF models
outperform non-personalized ones when users’ needs and
preference are stable in normal days (i.e., pre-event);

(2) In events of population-scale drifts, most models (except
Random) achieve better precision at during-event stage
(Fig. 6a, 6c), where Non-personalized (ItemMean, MostPopu-
lar) models are extraordinarily conspicuous. This contrary
to our hypothesis suggests that the herding effect seems to
increase the homogeneity of users and make them more pre-
dictable as Non-personalized models only work if everyone
is in the same cluster and only interested in popular items.
Also, the sudden shift of users to new states accelerates the
formation of herds, which allows algorithms to acquire new
user data faster and more than gradual drifts; and

(3) In a non-population scale event (Fig. 6b), users shift differ-
ent needs at during-event stage, which reduces the size
of herds among users. Temporal Aware and Neighborhood
based CF models achieve better performance while other
models fail in this scenario. In such event, users are biased
towards specific needs according to their own interests in-
stead of imitating others, which forms rational herds in the
system. It suggests users abandon old preferences and form

new personalities, which breaks the stereotype of users in
algorithms. However, neighborhood based models do not
require a prior-knowledge of users and only make neigh-
bor estimates from existing data. Temporal aware models
maintain good performance due to their good adaptability.5

5.2.2 Diversity of Recommendations. Diversity metrics are gen-
erally used to measure the ability of CF models to help users ex-
plore new items. MIUD@10 measures the intra-list diversity of
recommendations. As shown in Fig. 7, some baselines (e.g., SVD++,
TimeSVD, non-personalized models) generate more divergent rec-
ommendations. However, since iteration 5, all baselines are gen-
erating more homogeneous recommendations. The diversity of
recommendations becomes worse than normal days. Albeit the
homogenization of user behaviors during the pandemic-like event
“sharpens” the accuracy of recommendations, it aggravates the
emergence of echo chambers and narrows user attention.

5.2.3 Impact of Pandemic-like Events on Different Users. To verify
Hypothesis 3, we divide the entire population evenly into Normal

group (users with unshakable faith) and Affected group (adaptive
users). Fig. 8 illustrates the result of𝑛DCG@10 of all baselines on the
two groups. At pre-event stage, CF models generate comparable
recommendations on both groups. When the outlier event occurs,
the affected users may get poor recommendations, but the normal
users even get better results as they are traceable and conform to
their old impressions. After iteration 3, however, the performance
on the affected users increases linearly, but the normal users start to
be “affected” that their experience is worse than before. Therefore,
we reject the original hypothesis that the “better” overall perfor-
mance comes at the expense of a normal user experience.

5.2.4 Performance of Online CF Models. For online CF models,
we set 10,000 epochs per stage and measure Precision@10 with a
100-epoch window. Fig. 9a shows the evolution where the model
achieves stable increasing trend at pre-event stage. However,
when the pandemic-like event occurs, it experiences a steep drop,
and then increase rapidly until the end of the during-event stage.
Then, we observe another steep drop when the event subsides.

It seems that the sequential model works better during the
pandemic-like event. However, when shifting our viewing angle to
popularity of selected items at each epoch, we observe a skewed
popularity bias in Fig. 9b. At pre-event stage, the selected items do
not show a high popularity once the model is well-trained, which in-
dicates that people have different needs on items. At the beginning
of during-event, the overall popularity plummets down because
users shift their needs and choose items that they do not buy of-
ten before but more urgently needed at this time. After that, the
popularity shows a linear increase during the pandemic-like event.
It means that more users are prone to purchasing popular items
instead of what they used to buy. In other words, individuals feel
safer when following the public opinions. This trend indicates the
herding effect is spreading in the system. It also explains the rapid
increasing trend in Fig. 9a, because users become more predictable.
However, this trend gets alleviated once the pandemic-like event
ends, because users calm down and have developed new lifestyle.

5RNN4Rec achieve its best performance with large data or additional features
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(a) Precision@10 of online CF models (b) Iterative popularity of selected Items (c) Expression of needs at different stages

Figure 9: Evaluation of online CF models
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Figure 10: Results of AE model in Iterative Evaluation

Furthermore, with the help of a built-in logging layer in NEST,
which can access statistics of any observable and latent features,
we can collect users’ need expressions as they make decisions. We
investigate the quantity of user expression in different needs (in
Fig. 9c). It is observed a delicate changes that expressions of needs
distribute evenly at pre-event and post-event stages, but the Ph
need suddenly rises across the during-event stage.

5.2.5 Adaptive Ensembles. Both the evaluation results of offline
CF models and online CF models manifest a herding effect among
user interactions, which brings challenges to CF models whereas
some non-personalized methods may achieve a better recommen-
dation. We examine the proposed adaptive ensembles to integrate
different methods and learn the optimal algorithm in certain event
stage. Specifically, we put four common-used algorithms into the
candidate pool 𝐶 , which are 𝑘NN, MF, MostPopular and Random
algorithms. Fig. 10 shows the Precision@𝑘 = 1 of AE and its can-
didates in the iterative evaluation process where the proposed
AE model can effectively and learn the best candidate algorithm.
Especially at the during-event stage, AE beats its candidates ob-
servably. Therein, 1) at iteration 1, AE model generate comparable
recommendations as in normal days while others are frightened by
the pandemic-like event; 2) During the entire during-event stage,
AE can match users’ dynamic preferences effectively. Moreover,
the candidate algorithms largely affects the performance of the

A/B testing environment model. Therefore, enriching the candidate
pool will lead to better performance.

6 CONCLUSION

We investigate the impacts of “pandemic-like” events on collabora-
tive filtering based on a simulation study. Research and surveys in
other fields have shown that user behavior has undergone tremen-
dous changes since the occurrence of such events. The imitation
behavior and information cascades between individuals can make
the herd effect prominent. We propose a NEST framework to exam-
ine the characteristics of concept drifts in user behavior, which is
widely applicable in various scenarios: pandemic-like events, grad-
ual population-scale events (e.g., the annual Black Friday/Double
11 shopping festival) and sudden non-population scale events (e.g.,
local wildfire or flood). We further provide an elementary under-
standing of the macro-trends of population dynamics on CF models.
Our preliminary work show that the CF models are liable to be
shocked by the sudden changes initially. However, the irrational
herd behavior assimilates user preferences which makes users more
predictable. The CF models can learn the changed profiles quickly,
but concurrently amplify the popularity bias of items.
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