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ABSTRACT
This paper investigates the Cyber-Physical behavior of a user in
a large indoor shopping center by leveraging anonymized (opt in)
Wi-Fi association and browsing logs recorded by the center opera-
tors. Our analysis shows that many users exhibit high correlation
between their cyber activities and physical context. To find this cor-
relation, we propose a mechanism to semantically label a physical
space with rich categorical information from Wikipedia concepts
and compute a contextual similarity that represents a customer’s
activities with the mall context. We further show the use of cyber-
physical contextual similarity in two different applications: user
behavior classification and future location prediction. The exper-
imental results demonstrate that the users’ contextual similarity
significantly improves the accuracy of such applications.

CCS CONCEPTS
• Information systems → World Wide Web; Web log analy-
sis; Content match advertising;
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1 INTRODUCTION
Knowledge about consumer behavior is critical for retailers to make
personalised recommendations in targeted marketing, improving
services or do location prediction. The operators of large indoor
shopping malls wish to better understand consumer’s behaviors to
compete with the competition of online retail. Currently, physical
retailers primarily gather customer insights by analyzing point-of-
sale data. The path a customer took when visiting a mall, howmuch
time they spent at a particular location, or whether they looked
for a specific item is information that is typically not available.
In contrast, online retailers benefit from rich information about
customer activities, including knowledge ofWeb interaction such as
pages visits and dwell times. Combined with sales information, such
data provides actionable insights that can help retailers improve the
online shopping experience of customers. The activities inferred
from the data can be exploited to recognise users’ intent during their
online shopping. This, however, has not been previously explored
in indoor retail environments.

Malls, museums, galleries, and transport hubs are large hetero-
geneous environments offering a range of different services: retail,
entertainment, information, catering, etc. Increasingly, Wi-Fi net-
works and Bluetooth© beacons are being introduced into these
spaces allowing the logging of visitor indoor movement and infor-
mation behavior. Coupled with an understanding of the functions
of the different locations in a space (i.e. physical contexts) one can
ground and classify user behaviors or can predict future movements.
Such applications would be an important step towards creating and
delivering services to visitors.

The user behavior within a physical space is exhibited by hetero-
geneous data that represent different domains: the cyber domain,
and the physical trajectory domain. Cyber domain captures user’s
interest in the form of queries issued whereas the physical trajec-
tory (association withWi-Fi access points) captures the information
related to area of interest to the user. We hypothesize that users
with contextual intent exhibit similarity between their physical con-
texts and their cyber behavior (users issue queries related to the
context of the physical space), their cyber-physical behavior reflects
what they are interested in.

To illustrate this form of interest with some examples: consider
user A who intends to buy a laptop and compares products online
while in the vicinity of a store selling computers; user B, who enters
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the mall searching for a particular store and follows a trajectory
that ends in the vicinity of that store; and user C , who checks an
online footwear size chart while in a store selling shoes. From these
examples, it is clear that user A is interested in computers, user B
is interested in a specific store and user C is interested in footwear.
These examples demonstrate user interests that can be inferred
from the physical context and the combined cyber and physical
activity of users.

Hence, in this work, we present an approach to formulate a
correlation between user physical and cyber behavior from hetero-
geneous data i.e. the Web Query Logs(Cyber) and the Wi-Fi access
point association logs(Physical) in order to identify users’ interests
specific to the physical location. There are number of challenges
involved in order to identify such interests. The first one being
Semantic Labeling of a physical space. In a shopping center setup,
this can be done by assigning the category of shops. For example,
Cosmetics, Footwear, Clothing etc. within the range of access point.
However, these categories are very broad in order to correlate the
query context. Hence, the second challenge is Semantic Category
Expansion. i.e. to expand the shop categories such that they cover
the range of sub categories and products. Third, to find Contex-
tual Similarity, open text query also needs to be represented in the
form of categories (and the relevant sub-categories) to discover the
semantic similarity between queries and physical space.

The cyber physical contextual similarity shows the users’ in-
terests across different semantic categories related to the physical
environment and can be used in various applications that involves
understanding of user behavior. In our work, we show the use
of cyber-physical similarity features in two different applications,
Classification of User Behavior and Future Location Prediction. We
hypothesize that contextual similarity is a strong indicator of what
user is interested in out of the services offered and can hence be
helpful in, identifying whether user exhibit high contextual intent
with the physical space or is just browsing through the area; and,
which places user will visit next.

For behavior classification, the aim is to identify shoppers with
high contextual intent during their visit to a mall from those who
cannot be correlated with their local physical context by using
features from physical trajectory, Web logs and features extracted
from cyber-physical correlation that are strong indicators of users’
contextual intent. The example of users A,B and C exhibits high
contextual intent as given above, whereas there are many visitors
for whom their Web behavior and indoor context are contextually
intentless. In such cases their shopping intent cannot be easily
inferred from online and physical activities. Consider user D, who
visits the mall searching the Web for information about a particular
festival occurring in the city, and interleaving these searches with
queries about “lost luggage” and “baggage claim”. This user is likely
a tourist more focused on the free Wi-Fi than the primary services
provided by the mall. While such users clearly have an intent, from
the point of view of the mall operator, their visit can be classed as
intentless. We also place in this category ‘window shoppers’, or
shoppers with a high-level shopping intent (e.g., ‘I need to get a
present for my brother’) that cannot be tied to a particular retailer
or category of retailers. While all such users in this second category
are potentially of great interest to indoor retailers, we focus in this
part of work on detecting contextually intentful customers, utilizing

both the cyber and physical behaviours as signals in characterising
their intent.

Previous intent recognition work relied on examining either
physical behavior fromWi-Fi signals, mobile phone sensors, mobile
proximity sensors [13, 24, 26], or exploiting cyber behavior from
online Web browsing and searching logs [15]. To the best of our
knowledge, this is the first time user’s contextual intent in an indoor
space is inferred from both physical and cyber behavior.

We also employed user’s cyber-physical semantic similarity for
future location prediction. [16] studied the effect of different fea-
tures on location prediction from Location Based Social Network
data. They reported that category of location visited by user has
high impact on prediction accuracy. However, the same is not stud-
ied for an indoor setup where movements of a user are captured
by Wi-Fi traces. Therefore, we did an experiment study to see if
user’s future locations can be predicted much accurately by using
semantics of indoor locations visited by the user and query context.

The main contribution of this work is:

• Semantic Categorization, used to semantically label a physi-
cal space and find the correlation between open text query
with the physical semantics;

• Cyber-Physical Contextual Similarity model, used to extract
contextual features, including Physical and Cyber activities
captured by Wi-Fi AP association and Web Query logs;

• Shopping Intent Recognition System (SIRS) for User intent
recognition, used to classify user’s intent into two broad
categories (intentful or intentless).

• Effect of Semantic Context on Future Location Prediction

2 BACKGROUND
Semantic Labeling of Contexts Context is an influential factor
in analysing both human behaviors [17] and the user intent be-
hind mobile information needs [3]. Semantic labelling of a location
context is an important step to identify users’ intent and has been
researched well. Krumm and Dany Rouhana proposed Placer, which
treats the semantic labelling as a classification problem by using
the following features from government diary data: the time of
visits, the demographics of the user and nearby businesses [11].
They found that the demographic information and nearby busi-
nesses are helpful in semantic labelling places, e.g. school, home,
and work. Elhamshary et. al. proposed CheckInside, a fine-grained
indoor location-based social network, which utilizes the check-in
data collected from crowd of people to associate a location with its
name and semantic fingerprint. They claimed CheckInside provides
more accurate localization and better coverage [6].

Indoor Behavior Analysis: To support the real-world, mobile-
centric behavioral research, Misra and Balan presented LiveLabs,
which is a large-scalemobile testbed for in-situ experimentation [14].
They also investigated the user behaviorswhen consideringwhether
they are within a group or are alone, and found people behave
significantly differently within these two scenarios in terms of mo-
bility patterns, app usage and propensity to communicate over
phones [10].

Shopping Behavior Recognition: Understanding users’ shop-
ping behavior is practical, and some existing studies have been
conducted. For example, Zeng et. al. [26] studied how to determine
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shopper’s physical behaviors based on Channel State Information
(CSI) of Wi-Fi signals. Specifically, they focused on shopper’s be-
haviors near the shop entrances or within the store, namely stand-
ing/walking, and found CSI of Wi-Fi signals provide a good source
to classify these different physical behaviors [26]. Radhakrishnan
et. al. presented how to use smartphone and smartwatch to seg-
ment users shopping behaviors in a more fine-grained level, e.g.
putting an item in the cart [18]. However, these methods are either
device-based or wearable-based in controlled experiments, and the
proposed system in this paper is infrastructure-based and the data
were collected in the wild. Ren et. al. analyzed how people use
Wi-Fi to access the Web in indoor retail spaces while navigating
through the mall. They found patterns in shoppers’ weekly vis-
its, repetition within such visits, Web usage while browsing the
mall, and the physical contextual influence on individual’s cyber
behaviour [22]. Based on these findings, Ren et. al. developed a
tripartite location-query-browse graph (LQB) for contextual rec-
ommendations of location, query, and Web content, inferred from
searching, querying, and moving behaviors [20]. Further, using only
moving, searching, querying, and social behaviours inferred from
Wi-Fi logs, Ren et. al. also find strong correlations between these
cyber, physical, social behaviours and user demography (e.g. age,
gender, income, parental status, visitor types) [21]. The work in
this paper is going to build on the contributions from the previous
works by Ren et al. [20–22].

User Intent Recognition: Jansen et. al. studied the user intent
of Web queries, but focused on determining the informational, navi-
gational and transactional intents [9]. [3] investigated users’ intent
based on diary studies by focusing on their mobile information
needs, and suggested two more intent: geographical and personal
information management (PIM). Chuang-Wen You et. al. proposed a
phone-based system tomonitor shopping time in stores. Specifically,
they transformed this into a problem of classifying user trajectories
as shopping or non-shopping, by utilizing the spatial and temporal
features that are extracted from both Wi-Fi signals and sensors in
the phone, including accelerometer and digital compass [25]. Duan
and Zhai studied the intent representation problem in the field of
entity search, e.g. product retrieval, and proposed a coordinated
intent representation by linking the query space and the entity
space collectively. But, they achieved this by mainly utilizing the
query terms and product attributes [5]. However, little research
reveal whether shopping intent is hidden in individual’s movement
(physical) and query (cyber) behaviors recorded in his/her Web log,
which is investigated in this paper.

3 SYSTEM OVERVIEW AND DATASET
CHARACTERISTICS

These days, indoor spaces provide access to opt-in Wi-Fi that cap-
tures user movements and what they look online. They are also
rich in semantic information, such that areas in shopping centers
can be labeled based on shop categories and products they sell. The
semantics, when combined with knowledge from user movements
and queries, can help in determining interests of the user or where
they go next. But the challenge is to find correlation between user
behavior with the context of the shopping center. Our work tries
to solve this problem and proves the applicability of contextual

information in two different scenarios, user behavior classification
(i.e., shopping intent recognition) and future location prediction.

In this paper, we propose a method to do semantic categoriza-
tion of physical location (Wi-Fi access points) using the Semantic
Web. After categorization, we find semantic similarity between
user query with the physical locations (access points). Two experi-
ments were performed to see the effect of semantic similarity. First,
we build a classification model to classify user trajectory into two
broad categories, intentful and intentless and second we study the
effect of semantic or contextual intent on future location predic-
tion. In both experiments, it turned out that using context from
user cyber-physical activities significantly improves results from
baseline models or features. Next we explain the dataset used for
our experiments and its characteristics.

3.1 Data Acquisition
We study an anonymized dataset of Internet access, that was cap-
tured by an opt-in, freeWi-Fi network in a large inner-city shopping
mall in Sydney, Australia. The dataset collected from the Wi-Fi net-
work includes two kinds of logs: a Wi-Fi access-point association
log (AL) and a web query Log (QL), collected between September
2012 and October 2013. The shared, hallway spaces of the mall are
spread over six levels and are covered by around 70 Wi-Fi Access
Points (AP). The mall contains over 200 stores spanning 29 shop
categories, which are defined by the mall operator, e.g., Bakeries
& Cafe and Cosmetics & Costume Jewellery. The locations of the
stores and the APs are documented in 2D floorplans of the mall.

The AL contains the following parameters: 1) the association
access point ID; 2) start timestamp of the association; 3) associ-
ation duration; 4) data volume received/sent in this association;
3) encrypted persistent user device ID. The QL contains the fol-
lowing parameters: 1) query issued by user; 2) association access
point ID at which the query was issued; 3) encrypted persistent
user device ID. All user identifiable information (registration de-
tails and Wi-Fi MAC addresses) were replaced by a hash key in
a non-reversible way. Moreover, the queries issued by users are
quite dissimilar in terms of topics. To group the queries into a
higher level of categorization, wedeployed BrightCloud service
(http://www.brightcloud.com/).We found that they are spread over
68 BrightCloud categories. In order to understand the intent of
shoppers, the category we are interested in is shopping. However,
shopping category consists of only around 8% of queries, hence it is
a challenge to recognize peoples’ shopping intent from query text.

3.2 Access Point Association
The user movements that are captured by the AP associations rep-
resent the areas in the mall that were visited. However, the associa-
tions will also capture the situation where the user is just passing
by a particular location and did not visit any stores in that region.
In order to distinguish between the two types of association, we
generate a CDF (cumulative distribution function). The AL has a
sampling rate of 5 minutes and from the CDF around 30% of the
associations are found to be less then 10 minutes. Therefore, we
considered a user’s association with an AP only if the duration of
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association exceeds 10 minutes (two sampling intervals), assum-
ing users may only be passing through an area when association
duration is below 10 minutes to an AP.

3.3 Web Content-Access Point Correlation
For each visit of a visitor, we extracted a trajectory (sequence of
visited APs). We then analyze logs by extracting the top user tra-
jectory sessions, as explained in Section 3.1. Next, we construct a
sequence of cyber-physical term sequences that relate the change
in information needs with the change in physical context.

Thus, we hypothesize that an individual’s intent could be con-
structed by linking their physical behavior (trajectory in terms of
shop keywords) and cyber behavior. The challenge is to automati-
cally link the user query with the physical context. User intentful
open query text can contain terms that might not be captured from
the crowd sourced web applications. Hence, we need a better so-
lution and here we propose a context categorization system (CCS)
that uses the Semantic Web, explained in Section 4.

4 CYBER-PHYSICAL SEMANTIC
CATEGORIZATION AND CONTEXTUAL
SIMILARITY

We first define what are the Physical Context and Cyber Context:

Definition 4.1. Physical Context: is defined as the area in the mall
served by APs, and characterized by the Semantic Categories of
Table 1. These are the semantic categories proposed in this study.

Definition 4.2. Cyber Context: is defined as a document of enti-
ties/categories, extracted from users’ queries issued in a single visit
to the shopping mall.

In order to identify user intentions, we need to find if their
physical trajectories and cyber activities have some correlation
with the physical surroundings. We have shopping center context
in terms of shop categories. The main challenge here is to use open
text queries (a small set of terms) and find the correlation to another
small set of terms (representing category) that have minimal or no
lexical similarity with each other. For example, a user query may be
product name or a specific brand, e.g.Mascara and Ugg Shoes, which
are not in the mall-defined shop category list. Hence, we propose
a system that uses structured information from Wikipedia to find
intent signals from user queries with respect to physical context, by
extending both queries and the categories. For extending the queries
and categories we gather additional information from DBPedia, that
are richer in textual content than Wikipedia as it is a Semantic Web
application that makes the content of Wikipedia available in the
Resource Description Framework (RDF). The extended content
representations are then compared. Our approach comprises of
three steps: 1) Modeling Physical space using extended categorical
information fromWikipedia; 2) Extending user queries by mapping
it to Wikipedia concepts/pages and extracting categories related
to each concept/page; 3) Capturing intent signals by correlating
extended user queries with predefined Categories.

4.1 Preliminaries
Documents are collections of semantic categories. Terms (e.g. shoes,
boots) are nouns extracted from search logs and browsing logs.

Entities are known concepts or resources in Wikipedia, which could
include specific brand names. Semantic categorization is the method
to extract semantic categories (and the related sub-categories) to
represent the physical and query space. In this paper, we enrich the
semantics of users’ cyber and physical context by entity discovery
with the DBPedia knowledge base [1].

4.2 Physical Context
This section explains how we enrich the Semantic Categorization
in the shopping context and assign categories to Wi-Fi APs based
on the region covered by each AP.

4.2.1 Enriching Semantic Categories. The semantics of the physical
space are defined as shop categories by the mall operator. How-
ever, this categorization is too broad and limited in terms of user
shopping intent recognition. Specifically, this study aims to find
the correlation between user query with the physical semantics in
order to discover the intent of the user. User queries can contain
a broad set of terms that can be related to these categories. It is
feasible to correlate the user query terms with these categories
only using a rich corpus of terms, categories and products that
represents shopping center context.

To generate the corpus that contains a vast range of terms related
to shopping context, we use structured information fromWikipedia.
Information on Wikipedia is organized by categories and each
category has further subcategories forming a tree like structures
for the aid of navigation. We exploit this categorical information
to enhance semantics and generate a rich corpus of categories.
Our hypothesis is, user queries to some extent can be related to
Wikipedia categories in order to get an understanding of query
intent.

To start with, we first manually map each semantic category
defined by the mall operator to a Wikipedia category and get 18
broad Wikipedia categories, as given in Table 1. We then input
each category to our content categorization system, which iterates
through sub-categories using depth-first search of up to λ levels and
create a document of all the categories/subcategories iterated in
the process. We tested category collection up to λ = 7 and realized
that increase in the number of levels lead to increase in noise in
the category documents. Due to this noise we found that there is
no clear distinction between different semantic category document
related to shopping center. Increasing the λ results in high overlap
in category documents with irrelevant categories. Hence, we set
λ = 5 which was optimal and can vary depending on the context
for which the corpus of category document is being generated. This
collection of 18 documents corresponding to each Wiki category
given in Table 1 along with number of sub-categories act as the
training corpus or shopping center context.

4.2.2 Wi-Fi Access Point Semantics Assignment. In order to corre-
late user physical movements captured by the access points, it is
needed to label each AP with semantics corresponding to its loca-
tion in the shopping center.As each AP covers a certain area with
signal in the mall, the service area is approximated by a so called
Voronoi cell, in which any location is closest to its seed location (the
AP) than to any other seed location [2]. Then, we have manually
rectified them to match the shop frontages and thus better represent
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Table 1: Semantic Categories. The number in the brackets
denotes the number of sub-categories, product names, and
related terms.

1. Bags (104) 2. Bakeries (48)
3. Clothing (183) 4. Coffee (74)
5. Consumer Electronics (381) 6. Cosmetics (173)
7. Decor (188) 8 . Fashion Accessories (203)
9. Food Retail (91) 10. Footwear (94)
11. Home Appliances (174) 12. Jewelery (153)
13. Mobile Phones (229) 14. Restaurants (127)
15. Retail (214) 16. Sports (141)
17. Watches (123) 18. Fashion (292)

physical contexts [22]. Once we get these Voronoi cells, we know
which shop falls under an AP from the shopping center floor map
(on average, there are 3.67 shops in each Voronoi cell). We then
assign a list of semantic categories to an AP corresponding to each
shop in the region covered by an AP.

4.3 Cyber Context
As defined earlier, cyber context is a document of Wikipedia cate-
gories for the entities/concepts extracted from user queries. The
generation of this document is explained in the next section.

User Query Extension using CCS: Content Categorization System.
Given a query content, CCS extracts entities from the query, then
gather contextual Wikipedia categories for each entity from DBPe-
dia [1]. DBPedia provides structured information from Wikipedia
in the Resource Description Framework (RDF) format, which can
be queried using SPARQL, a query language to retrieve and ma-
nipulate data stored in RDF format. The CCS system is shown in
Figure 1a, and we describe the components by taking the query,
“The Face Shop clear mascara review", as an example in the following
sections. The process of query categorization is quite similar to [12]

Entity Extraction. Entity extraction in our system can be con-
sidered as a component that retrieves DBpedia resources from the
query text. We use Targeted Hypernym Discovery(THD) [4], an
advanced unsupervised entity discovery and classification system
for entity extraction. THD discovered two entities from the example
query given above, the Face Shop and Mascara

Graph Explorer. Graph explorer is a depth first search algorithm
written to explore DBPedia graph. This algorithm takes, as its in-
put, a list of entities annotated from input query text by entity
extraction and looks for resources connected to it via the Simple
Knowledge Organization System (SKOS) properties skos:subject
and skos:broader. The algorithm iterates through each entity dis-
covered and performs a depth first search on the DBPedia graph.
The subject is retrieved only for the main entity discovered and
for the broader property. Then the graph is iterated recursively for
n hops to form a contextual category list and return this list as a
document.

4.4 Cyber-Physical Contextual Similarity
In this section, we define the contextual similarity between user’s
physical movements with what they are looking for online.

(a) Content Categorization System Architecture

(b) Example

Figure 1: Content Categorization System

4.4.1 Physical Context. We consequently define the physical con-
text as the area in the shop served by a single AP, characterized
in terms of represented latent semantic categories from Wikipedia
as described in Section Semantic Categorization, denoted as C =
{c1, c2, ..., ch }, where h is the number of categories.

The categories, generated by the proposed CCS system (as shown
in Fig. 1) are represented as documents D = {d1,d2, ...,dh } of sub-
categories and broader categories for ciϵC . Then, we denote the
physical context for each AP as Pa : {pa,1,pa,2, ...,pa,l }, where
pa,i ∈ C for all shops that are located in the Voronoi regions of AP
ai .

4.4.2 Physical Activities. We define physical activity of a user in
terms of a trajectory T = ((a1, t1), . . . , (an , tn )) which is a list of
tuples of visited AP IDs and the cumulative time of association. We
usea = {a1,a2...,an } to represent AP, wheren is the number of APs
user connected to during a single visit to the mall and t to represent
time association where tk is the duration user spent connected to
ak during the visit: t = {t1, ...., tk , ...., tn }. If a user was associated
with an AP multiple times in a visit, the total duration of time spent
at this AP is stored.
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Annotated Category Identified Category Query

Cosmetics Cosmetics the face shop clear mascara reviews,
Muk Hair Wax

Clothing Clothing Superdry Sale,
Emporio Aramani

Fashion Fashion TopShop Sydney

Footwear Footwear Ugg Shoes

Mobile Phones Mobile Phones Nokia Lumia 520 reviews

Table 2: Semantic Categories withMax Cosine Similarity for
sample queries

4.4.3 Cyber Context. We define cyber context in terms of queries
extracted from query logs(terms extracted from click through URLs).
During a single session of a user, we extract queries from all URLs
accessed by user and represent as q = {q1,q2, ....,qj}, j is the total
number of queries extracted from the URLs visited by user. We use
our Content Categorization system, defined in Section 4.3, denoted
asCqi = {cq1 , cq2 , ..., cqm } for each qi ∈ q. Cyber context will then
be presented as

Qc =

m⋃
i=1

cqi = cq1 ∪ cq2 ∪ · · · ∪ cqm . (1)

4.4.4 Similarity Between Physical and Cyber Contexts. The simi-
larity between the physical context Pc and Cyber Context Qc is
calculated in 2 steps. First, we represent the TF-IDF (Term Frequency
- Inverse Document Frequency [23]) between each document di ∈ d
and Qc as V (di ) and V (Qc ), then we compute the cosine similarity
with

cos(di ,Qc ) =
V (di ).V (Qc )

|V (di )| |V (Qc )|
. (2)

The contextual similarity with Semantic Category ci represented
asCS(ci ) is cos(di ,Qc ) boosted with Physical Context similarity i.e.
time spent at each category denoted as tci .

CS(ci ,Qc ) = tci ∗ cos(di ,Qc ) (3)
where tci > 0 and cos(di ,Qc ) > 0.

4.5 Analysis
We examined cosine similarity results for user issued queries with
Semantic Categories. We first annotated each query issued by a
user manually with 18 Semantic Categories. The annotation was
done by 3 participants who were given a list of queries and a list of
semantic categories. They performed the task independent of the
contextual similarity model and were asked to label queries with
the semantic categories out of the given list. We then compare the
distribution of count of manually annotated query categories with
the Top-3 categories retrieved by max cosine similarity of query
document with Semantic Category documents Figure 2. To see the
similarity in distribution across the two sets of categories labels,
we calculated Pearson Correlation Coefficient at significance level
of p < 0.05 and found to be significant (R = 0.6084 and p-value
= 0.0073).

In Table 2, we show the category with max Cosine Similarity
for a given query. For example, given a query Ugg Boots which is
a footwear brand we get maximum cosine similarity for Footwear
Semantic Category as shown in Figure 3. Figure 4 shows the Cosine

Figure 2: Distribution of manually annotated and labeled
categories

Figure 3: Cosine Similarity for Cyber Query: Ugg Shoes
Similarity for each Semantic Categories for query the face shop
clear mascara reviews, and it is observed the max similarity is for
Cosmetics, which is clearly correct. We evaluated query categoriza-
tion using Accuracy@3 for 217 manually annotated queries. We
were able to categorize 49.2% of the queries correctly which shows
successful mapping of the query text with the Semantic Categories
using the proposed approach. In our work, Shopping Intent recog-
nition explained in next section, we did not use the specific interest
category from query but the similarity distribution across all cat-
egories for given query set per user trajectory as a feature vector
that showed to improve the accuracy of Shopper classification into
2 categories intentful and intentless.

5 SHOPPING INTENT RECOGNITION
SYSTEM

Given AL, QL, Shop Categories and Voronoi Regions we create an
Intent Recognition Model as shown in Figure 5. The first step is to
enrich indoor semantics by using the shop categories as given by
mall operator. This step is explained in detail in Section 4 where
we create a corpus of 18 documents containing terms and sub-
categories for Semantic categories shown in Table 1 along with the
count of sub-categories in each category document. Once we get
the semantic categories for the shops in the shopping center, we
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Figure 4: Cosine Similarity for Cyber Query: the face shop
clear mascara reviews

Figure 5: Shopping Intent Recognition System
then need to label each access point with these categories based
on the range covered by the AP determined by voronoi cells as
explained in Section 4.2.2 of Section 4. After semantic labeling of
each AP, we then extract Physical Activity and Cyber Context for
user sessions i.e. user visit to the mall from AP and Web query logs.
We define Physical Activity for a user session as total time spent
by user in each semantic category for a visit to the mall and Cyber
Context as a document of categories/entities extracted from users’
queries issued in a single visit. We then calculate the Cyber-Physical
Contextual similarity from physical activity and cyber context of
the user. This will give us Contextual Similarity features that act
as input to our Intent Recognition Model along with Physical and
Cyber features derived from AL and QL.

5.1 Cyber-Physical-Contextual Features
We investigate an approach for recognizing in-store shopping be-
havior from an individual’s physical movements from Wi-Fi traces
and cyber activity from Web queries that users issue. Our approach
rests on the belief that user intent can be identified by correlat-
ing their movements with the content they look online. During a
typical visit to a shopping center, a shopper uses Wi-Fi either for
browsing or when they are looking for some shop or an item they
are interested in. If the user who is using Wi-Fi, has a shopping
intention, then there is high possibility that they visit some specific
category shops and look for related items/category online either
to compare the price or for reviews. For example, we show part
of the user trajectory in Table 3 where user looked for "nest au
homeware" online and an association of more that 10 minutes was
found with an AP wap032 listed under category "Homeware". We
try to correlate this behavior using 3 feature set , Physical, Query

Wi-fi AP AP Semantics Query

wap030
Restaurant nest au homeware

Cafe
Groceries

wap032
Homeware
Clothing
Footwear

wap009
Clothing
Footwear

· · · · · · · · ·

Table 3: User Trajectory

and Contextual as given below where we use Trajectory-based
Cyber-Physical contextual Similarity for contextual features. These
features are then used to build a binary classifier for labeling the
user trajectory as Intentful(IF) or Intentless(IL):

1) Physical Activity vs Intent:
• F1: Trajectory length: is defined as the number of APs in a
user’s trajectory;

• F2: Total duration: how long they spend in the mall in sec-
onds;

• F3-F20: Time spent per shop category: means the distribution
of the total duration over shop categories.

2) Cyber-Physical activity vs Intent: F1-F20; F21: # of queries.
3) Contextual Features vs Intent:
• F22-F39: CS(c1)-CS(c18) - Contextual Similarity of User’s
Cyber-Physical activity with Semantic Category documents
i.e. d1-d18;

• F40: Max Contextual Similarity - ismax(CS(c1) : CS(c18));
• F41: Sum of CS(c1):CS(c18);
• F42: Cosine Similarity of query with shop list - is the Cosine
Similarity of categories extracted from user issued queries in
a single visit with the list of over 200 stores in the shopping
center;

• F43: Cosine Similarity between query and keyword list from
Foursquare, Yelp and Google Places - is the Cosine Similarity
of categories extracted from user issued queries in a single
visit against the list of keywords/categories extracted from
crowdsourced Web applications including Foursquare, Yelp
and Google places for stores in the shopping center.

5.2 Intent Recognition Model
As most of our cyber-physical-contextual features are independent
of each other, we deploy Decision Table/Naive Bayes(DTNB) hybrid
classification method [7] to perform the Intentful and Intentless
classification. DTNB selects the deterministic features for recog-
nizing intent of a user’s visit to a shopping center from a range
of input features, and we show how Decision Table, Naive Bayes
classifier, and the Hybrid model work with the proposed features
as follows.

Decision Table. Given a set of labeled instances as a training
sample, e.g. the labelled intentful/intentless sessions, an induction
algorithm creates a decision table with default rule mapping to
the majority class, which we abbreviate as Decision Table Model
(DTM), including two main components:



BuildSys ’18, November 7–8, 2018, Shenzen, China Manpreet Kaur et al.

• Schema: set of features selected bymaximizing cross-validated
performance using forward search.

• Body: multiset of labeled instances.
Each instance consists of a value for each of the features in the
schema and a value for the class.

For label assignment to an unlabeled instance I by a DTM classi-
fier, let L be the set of labeled instances in the DTM matching given
instance I . There is a match between 2 instances if the features
in the schema are same. If L = 0, DTM returns the majority class,
otherwise return the majority class in L.

Naive Bayes. Naive Bayes classifier is a widely used Machine
Learning technique based on thewell-knownBayes Theorem,which
states:

p(li | fi ) =
p(fi |li )p(li )

p(fi )
, (4)

where li is a class label and fi is a feature from the set of contextual
features described in Section Cyber-Physical Contextual Similarity;
p(li , fi ) is probability of f in li ; p(fi |li ) is the probability of fi given
class li ; p(li ) is the probability of occurrence of class li and p(fi ) is
the probability of occurrence of feature fi .

Considering the features are defined from physical and cyber
perspectives, we assume that they have independent distribution
and thereby Eq. 4 becomes:

p(f |li ) = p(f1 |li ) ∗ p(f2 |li ) ∗ ... ∗ p(fn |li ). (5)

In a classification task, given feature set f = { f1, f2, ..., fn } for
binary classification of {li , lj }, Bayes Classifier labels an instance
as class li if its posterior probability is higher than the other class,
namely p(f |li ) > p(f |lj ).

Decision Table Naive Bayes(DTNB) Hybrid model. DTNB hybrid
model is a simple Bayesian network in which the decision table
(DT) represents a conditional probability table [7]. The algorithm
for learning the combined model (DTNB) works in a similar way
as that of stand-alone DTs. It basically splits the feature set into
two disjoint subsets: one for the DT, the other for NB. Then, it
uses forward selection, where, at each step, selected attributes are
modeled by NB and the remainder by the DT.

The class probability of the DT and NB are then combined to
generate overall class probability estimates. Assuming fDT is the
set of features in the DT and fNB the one in NB, the overall class
probability is computed as

P(li | f ) = a ∗ PDT (li | fDT ) ∗ PNB (li | fNB/P(li )) (6)

where PDT (li | fDT ) and PNB (li | fNB ) are the class probability es-
timates from the DT and NB respectively, a is a normalization
constant, and P(li ) is the prior probability of the class label li .

5.3 Future Location Prediction
Here, we deploy the proposed findings in this study to further
investigate: Given users’ physical and cyber activities in terms of
Wi-Fi AP association and Web query logs, is the semantic content
of queries are indicative for location prediction?

Specifically, we set up the following configurations: Provided
with a list ofm user trajectories T = {t1, t2, ..., tm } and a list of n
access pointsA = {a1,a2, ...,an }. Each user trajectory ti has a list of
APAti whereAti ⊂ A , which the user has connected to in the order

of association time and a set of n queriesQ = {q1,q2, ...,qn }. Given
that, can we calculate the likelihood of an unvisited ap aj < Ati
that the user will visit in future for a target trajectory tj ∈ T . For
example, given a user’s current physical and cyber features, we can
predict the likelihood he will visit other APs. This is reasonable for
indoor environment due to its structured lay-out.

For the recommendation algorithms, we deploy both Item-Based
Collaborative Filtering [19] with Contextual Similarity defined as
follows.

Contextual Similarity. The similarity between the physical and
Cyber Context Qc is calculated in 2 steps. First cosine similarity
between each document di ∈ d and Qc TF-IDF vector represented
as

cos(di ,Qc ) =
V (di ).V (Qc )

|V (di )| |V (Qc )|
(7)

generating a similarity vector CS of size h where Si is the simi-
larity of query document Qc with category document di .

The second step is to generate a dot product of physical context
vector Pai for ai ∈ A with the similarity vector CS that represents
user query context corresponding to each AP ai as follows

SS = Pai ·CS =
h∑
j=1

Pai , j ·CSj = Pai ,1·CS1+Pai ,2·CS2+.....+Pai ,h ·CSh

(8)
where h is the no. of categories.

The semantic similarity vector SS where SSi is the semantic
similarity of AP ai , used to weigh the similarity score calculated
in Item-Item similarity by taking the product of JSi and SSi where
i is an AP ai :

weiдhtedSimilarity(JSi , SSi ) = JSi ∗ SSi . (9)

Finally, prediction is then given by sorting the weighted similar-
ity score and extracting top k items.

6 EXPERIMENTS
We evaluate the performance of DT, NB and DTNB hybrid approach
for shopper’s intent recognition by using different sets of Physi-
cal (Phy), Cyber(Cyb), Contextual(Cont) features (see above). We
report the final results of a 10-fold cross-validation using Weka’s
implementation of DT, NB and DTNB. The classification accuracy
for identifying shopper’s intent are shown in Table 4 on the dataset
described in next section.

6.1 Experiment Configuration
We focus on a subset of complete user trajectories where users is-
sued Web queries. A complete trajectory is a trajectory where the
user enters from one entry point of the mall and exits from the same
or other exit point, thus connecting at least 3 AP’s. Out of 6784
total trajectories, we have identified only 176 such complete trajec-
tories in our dataset. Four annotators without in-depth knowledge
of the experiment then manually categorised the 176 trajectories
into intentful (48 trajectories) and intentless (128 trajectories), with
100% inter-annotator agreement. The annotators inspected only
the queries and marked them as relevant if deemed related to the
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environment of the shopping centre. A session was labelled as in-
tentful if at least one of the queries issued in this session is relevant,
and intentless otherwise.

For intent recognition, we used Accuracy%, F-Score, Precision
and Recall to evaluate classification model: Accuracy% denotes
what percent of classification was correct; Precision denotes what
percent of positive classification were correct; Recall denotes what
percent of positive instances were correctly classified; F − Score is
a weighted harmonic mean of Precision and Recall.

For location prediction, we used Accuracy@k and Mean Recipro-
cal Rank(MRR) to evaluate prediction results. Accuracy@k is num-
ber of correct locations predicted over k , which is the total no. of
locations predicted.MRR is used to evaluate the ranking of first cor-
rect location predicted and can be calculated asMRR = 1

n
∑n
i=1

1
Ri ,

where n is the no. of prediction results and Ri is the rank of first
correct predicted location for trajectory i .

6.2 Results on Intent Recognition

Features Method Accuracy % F-Score Precision Recall

NB 63.06 0.59 0.56 0.63
Phy DT 72.73 0.61 0.53 0.73

DTNB 72.73 0.61 0.53 0.73

NB 63.06 0.59 0.56 0.63
Phy + Cyb DT 78.41 0.73 0.81 0.78

DTNB 78.41 0.73 0.81 0.78

NB 73.29 0.68 0.69 0.73
Cont DT 76.13 0.73 0.74 0.76

DTNB 76.7 0.75 0.75 0.77

NB 69.32 0.66 0.65 0.69
Phy + Cont DT 76.14 0.73 0.74 0.76

DTNB 76.14 0.74 0.74 0.76

NB 69.32 0.66 0.65 0.69
Phy + Cyb + Cont DT 78.41 0.75 0.79 0.78

DTNB 81.25 0.8 0.8 0.81

Table 4: Intent Recognition Results

The DTNB hybrid classifier always performs comparably or bet-
ter than DT and NB. The best accuracy of 81.25% is achieved with
DTNB on all Cyber-Physical-Contextual features, and demonstrated
how accurately shoppers’ intent can be identified. Moreover, the
Intent Recognition results (Table 4) show how contextual features
improve the accuracy of classification. To verify whether the con-
tribution of contextual features is statistically significant, we tested
pairs of Physical with Physical+Contextual, and Cyber+Physical
with Cyber+Physical+Contextual features (two-tailed paired t-test
[8], with a 95% confidence level). Each group in a pair contains 12
distinct values corresponding to accuracy, f-score, precision and
recall for 3 different methods DT, NB, DTNB giving a d f of 11.
The results show that the increase in performance with contextual
features is statistically significant.

6.3 Results on Future Location Prediction
We performed prediction experiment on 994 full and partial tra-
jectories where at least one query was issued. Full trajectory is
a trajectory where user entered from one entry point and exited
from the same or the other whereas partial trajectory is a trajectory
where one connects somewhere in the middle but exits from either
of the exit points. We then partitioned 325 trajectories into train

Figure 6: Prediction Results

Figure 7: Prediction Results

and test trajectories. The partition point is the access point where
user issued its first query and the rest of the trajectory (access
points in the other half) are used for evaluating prediction results
to see if the semantic context of queries with respect to physical
locations helps in improving prediction results. We then used 669
full trajectories and 325 partitioned train trajectories to generate
collaborative filtering matrix and get Top-10 prediction results for
325 partitioned test trajectories using simple Item-Item method and
Item-Item-Weighted using Semantic Similarity weights.

Bar chart on the left in Figure 6 show results with no improve-
ment in accuracy using contextual similarity weight. We then gen-
erated a chart of predicted APs on x-axis and count of AP’s on
y axis in the test set(all) along with predicted AP’s using i-i and
i-i-w methods as shown in Figure 7. From the visualization, we see
that i-i-w method (third bar from top) works well at predicting less
popular APs. This can be because less popular locations might be
semantically similar.
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Figure 8: Sensitivity Analysis of Accuracy@10 by removed
top-n APs, n ranging from 1 to 20

Figure 9: Mean Reciprocal rank for k predictions, k = 1,5,10

To assess the correctness of our assumptions based on the chart,
we did sensitivity analysis on Accuracy@10 by removing top 1-20
APs. Figure 8 shows that i-i-w consistently outperforms i-i on re-
moving some of the popular APs. We then checked Accuracy@k for
k = {1, 5, 10} after removing Top-10 APs from the test set (Figure 6).
We see an improvement in accuracy for item-item weighted(i-i-w)
compared to item-item(i-i) where accuracy increases with increase
in no. of predictions(k). The improvement in accuracy is statistically
significant between i-i and i-i-w (p = 0.0188, two-tailed paired t-test
[8]). We also used MRR to evaluate the ranking of first correct loca-
tion predicted using i-i and i-i-w for top-k prediction, k = 1, 5, 10.
As shown in Figure 9, MRR for i-i-w is better then i-i. We thus con-
clude that contextual similarity improves prediction of less popular
locations with better ranking as well.

7 CONCLUSION
We proposed a semantic enrichment and contextual similarity
model to deal with one major challenge, mapping semantic similar-
ity across two different domains: cyber and physical behaviours. It
is obtained that using this contextual similarity can further improve
the accuracy of both applications (intent recognition and location
prediction) with respect to just using cyber/physical features only.
We also show that the proposed contextual features significantly
improve the accuracy of intent recognition and future location pre-
diction. A validation of this approach on a more comprehensive is
envisaged, using crowdsourcing for the manual labelling task.
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