
Interactive Trip Planning Using Activity Trajectories

Sheng Wang* Zhifeng Bao* J. Shane Culpepper* Timos Sellis

†

Mark Sanderson* Munkh-Erdene Yadamjav*

*School of CSIT, RMIT University, Australia

†
School of Software and Electrical Engineering, Swinburne University of Technology, Australia

*firstname.surname@rmit.edu.au

+

tsellis@swin.edu.au

ABSTRACT
We present an interactive trip planning system called @FINDER
which uses an exemplar trajectory query to find the most related
top-k spatial-textual trajectories. @FINDER is implemented to sup-
port various degrees of user information needs for trip planning.
For users with zero knowledge about places to travel, @FINDER
provides a heatmap of popular points of interest (POIs) as well
as popular activities from a trajectory database. The system helps
users quickly explore the places, and helps formulate an exemplar
trajectory query, which specifies preferred places to go and activ-
ities of interest. Then @FINDER provides efficient query process-
ing of the top-k related spatial-textual trajectories using a new ap-
proach to spatial-textual trajectory indexing recently developed at
RMIT University. For each of the top-k results found in the form
of a set of POIs and activities, @FINDER further computes the op-
timal route (in term of the travel time) covering all of the POIs,
and returns an album to the user. Lastly, users can further interact
with @FINDER by adding or deleting POIs/activities in the original
exemplar query, and the system will update the results in a timely
manner.

Keywords
Activity Trajectory Search; Trip Planning; Interactive Exploration

1. INTRODUCTION
Trip planning [4, 5] is an important tool for people who want

to make the most of their travels. Most people find it difficult and
time-consuming to plan a trip, and it can be even more difficult to
reliably match personal interests to Points of Interest (POIs) in an
unfamiliar location. In this work, we present a tool to help users
plan more reliable trips using historical trajectories in a social net-
work.

In recent years, a large number of trajectories composed of a
set of points which record people’s daily movements and activi-
ties have been created in social networking repositories. Consider
the example in Figure 1. Jack visited Los Angeles and routinely
posted on Facebook during his trip. The posts indicate that he went
to three different places, and photos with each activity were shared.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ADCS ’16, December 05 - 07, 2016, Caulfield, VIC, Australia
c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4865-2/16/12. . . $15.00
DOI: http://dx.doi.org/10.1145/3015022.3015030

coffee

Laker, coffee

shopping

souvenir

movie

mountain

o

y

x

Figure 1: Example of a Trajectory (black) and a Query (red).

We refer to an album recording a user’s movement as an album-
annotated activity trajectory T (or, more simply, a “trajectory”),
e.g., Jack’s trajectory T is three ordered points and each point con-
tains keywords. Such trajectories can play a significant role in guid-
ing tourists for their trip planning.

EXAMPLE 1. George will visit Los Angeles for the first time.
There are three places he would like to visit initially – the hotel
reserved in advance, the airport, and Hollywood. He also has a
few favorite activities such as “drinking good coffee”, “shopping”
and “looking at souvenirs”, which can be suggested for each place.
If these preferences are defined as a query Q, related trajectories
such as Jack’s trip, which cover similar locations and activities can
be used to suggest further refinements, and can help George plan a
more rewarding trip.

We refer to the query in Example 1 as a Top-k Exemplar Trajectory
Query (ETQ), which is defined as:

DEFINITION 1. (Top-k Exemplar Trajectory Query) Given a
trajectory database D = {T

1

, . . . , T|D|} and query Q, a trajec-
tory search retrieves a set R ✓ D with k trajectories such that:
8r 2 R, 8r

0
2 D �R, ˆS(Q, r) > ˆS(Q, r

0
), where ˆS(Q, r) is the

relevance score between the query Q and a trajectory r that will be
discussed in Section 2.2.

The query Q consists of points with textual descriptions of ac-
tivities. We observe that previous work [6, 8] only allows users to
specify their preferred activities at the trajectory level, while users
are not allowed to specify their preferred activities at the POI level.
This may result in coarse-grained result matching. Moreover, we
find that existing commercial systems such as Google Trips1 and
Triphobo2 only provide trip recommendations based on a destina-
tion city, while (advanced) search as specified in the above example
does not currently exist.
1https://www.google.com/trips/
2https://www.triphobo.com/

Therefore, we propose Exemplar Trajectory Queries (ETQ) to
enable finer-grained specifications on places and activities. More-
over, we introduce a new similarity function, and an efficient pro-
cessing algorithm to integrate textual and spatial similarity. Then
we develop a system called @FINDER to help users plan a person-
alized trip by specifying locations and activities directly on top of
a Google map. The prototype of @FINDER is available at http:
//115.146.90.65/finder/, whose main features are:

• An interactive tool to create queries. Even with no prior knowl-
edge, users can quickly find popular activities and places in the
city using @FINDER.

• ETQ is supported using a pointwise similarity function which
incrementally computes the search results efficiently, and allows
efficient updates.

• Final results are presented as the best matching route, which cov-
ers all points along with the travel distance and/or travel time.

• Query refinement by adding or deleting points in each search
iteration is also supported.

2. OVERVIEW

2.1 Architecture
Figure 2 shows the overall architecture for @FINDER. The inter-

face has two main functions. First, a user submits an initial query
using an overlay on a Google map, and the query is sent to the
server to compute the top-k trajectory results, which are sent back
and displayed on the Google map in the user’s browser. When
the user chooses to view a trajectory, the corresponding album is
fetched from the database and displayed. Second, an interactive ex-
ploration can then be conducted using the returned results to help
the user refine their trip.

Geo-tags
Store

Album
Store

Query
Processor

Top-k Results

Queries
Interactive
Interface

Index

Trajectory
Database

Figure 2: The system architecture of the @FINDER system.

2.2 Pointwise Similarity
Before describing our processing framework, we first give the

definition of similarity ˆS (Q, T) between a query and a trajectory.
For each query point qi in Q, the similarity ˆS (qi, pj) is computed
with every point pj in the trajectory T . The maximum value is
represented by ˆS(qi, T), and the sum of the query points is the
overall similarity ˆS (Q, T).

DEFINITION 2. (Trajectory Similarity) The trajectory similar-
ity between T and Q is a sum of point-trajectory similarities be-
tween T and each point in Q, normalized by |Q|:

ˆS (Q, T) =

X

qi2Q

ˆS (qi, T) /|Q|. (1)

Here ˆS (qi, T) is the similarity between a query point qi, and a
trajectory T , and defined as:

ˆS (qi, T) = max

pj2T

n

ˆS (qi, pj)
o

(2)

Algorithm 1: Two-level Threshold Algorithm (ETQ-2TA)
Input: Trajectory database D, query Q, MT
Output: Top-k result set RS

1 it 0; RS ;; . it: initial number of iterations
2 while it < it

max

do
3 foreach qi 2 Q do
4 Rit (qi) ExploreSptial (qi, it, D.P);
5 Rit (qi) ExploreTextual (qi, it, D.P);

6 Ctra
|Q|
S

i=1

Covered (Rit (qi),MT); . MT:mapping table

7 if |Ctra| > k then
8 unseen_UB = UBunseen(D � Ctra);
9 seen_LB [] =

S

T2Ctra

LBseen (T);

10 Sort seen_LB[] in decreasing order;
11 if seen_LB[k] > unseen_UB then
12 seen_UB [] =

S

T2Ctra

UBseen (T);

13 Sort Ctra by seen_UB[] in decreasing order;
14 foreach Ti 2 Ctra do
15 Compute ˆS(Q,Ti); . Refer to Definition 2
16 if |RS| < k then
17 Insert Ti in RS;
18 else
19 if ˆS(Q,Ti) > RS.min then
20 Replace RS.min with Ti;
21 if RS.min > seen_UB[i+ 1] then
22 break;
23 it++;
24 return RS;

where ˆS (qi, pj) is the similarity between two points qi, pj , which
in turn is defined as:

ˆS (qi, pj)=

⇢

0, qi.act \ pj .act = ?
↵ · ˆSS + (1� ↵) ˆST , otherwise. (3)

Here ˆST (qi, pj) is the text similarity and ˆSS (qi, pj) is the spatial
proximity between two points, qi.act is the keywords attached to
point qi. The value ↵ 2 (0, 1) is used to adjust the relative im-
portance of the spatial proximity and the textual similarity. We use
the sum of the textual relevance of each term [7] to measure the
textual similarity and the Euclidean distance to measure the spatial
similarity. This results in our final combined similarity measure:

ˆST (pi, pj) =
X

t2pi.act

�(t) (4)

ˆSS (pi, pj) =
Dmax � Euclidean (pi, pj)

Dmax
(5)

where �(t) is the weight of term t, and we use a simple TF·IDF
model [1] to compute �(t) in this paper. Dmax is the maximum
distance between any two unique points in geographical space.

2.3 Processing
Trajectory Database & Index. Storage is divided into two parts,
the trajectory and the album. The main objective is to increase
the throughput during query processing. Since the album is not
taken into consideration when processing the query, the album will
only be accessed and displayed when the top-k results are returned.
Three basic data structures are maintained:

(1) An inverted index, where the key is a keyword, and the value

Figure 3: The @FINDER interface with a simple query scenario.

is a sorted posting list of points whose activity contains the
keyword.

(2) A Z-curve, which is used to expand the spatial dimension
based on an incremental range query [7].

(3) A mapping table MT , which maps an activity point to the par-
ent trajectory.

Query Processor. We use a filter-refine processing framework.
We filter the impossible trajectories from consideration, and refine
based on the remaining candidates. We first extended the frame-
work of Chen et al. [3] as a baseline method (ILA) with a gap-
bounded optimization (ILA-Gap) to eliminate some of the per-
formance bottlenecks we encountered. Further, we propose a two
level algorithm which removes repetitive scanning over the trajec-
tory points (ETQ-2TA) as shown in Algorithm 1, which we now
summarize.

An ETQ finds the k closest trajectories for an exemplar query,
where each trajectory is composed of a tuple of points. Essentially,
the trajectory problem can be decomposed into finding the clos-
est points for every point in the query, which is also reflected in
our similarity computations. A pointwise processing algorithm is
derived to solve the ETQ problem by incrementally expanding the
search range until the top-k results are found. The key idea of our
approach can be summarized into three steps:
Step 1 (Expansion): In lines 2-6, we fetch the posting lists for
all keywords in the query, and load the points by setting a cur-
sor in each posting list (ExploreTextual()) from the point sets D.P .
Meanwhile, for each location in a query, we use a z-curve to do an
incremental range query, and load potential candidates (ExploreS-
patial()). All of the loaded points are stored in Rit(qi). Next, we
find the candidate set Ctra using the mapping table MT . The trajec-
tory containing the candidate is found through mapping table.
Step 2 (Bounded Computation): In lines 8-11, based on the cursors
in the posting lists and z-curves, the upper bound for all unseen
trajectories UBunseen, and the lower bound of the k-th trajectory
seen_LB[k] in the candidate set can be computed. When the lower

bound is not less than the upper bound, the candidate set expansion
stops, and Step 3 is initialized. Otherwise Step 1 is repeated, and
expanding continues with new results based on posting list and the
z-curve. To get the lower bound of trajectory T , we sum up all
of the available similarities of T in all of the ranked lists Rit(qi),
and the upper bound of the unseen trajectories can be computed by
summing up the minimum similarity from each of the ranked lists,
which is similar in spirit to ideas proposed by Zhang et al. [7].
Step 3 (Refinement): In lines 12-22, the top-k results are selected
from the candidate set by computing the upper bound for each can-
didate trajectory in candidate set, and ranking the results in de-
scending order (line 13). Then the final similarity is computed
between each candidate trajectory and Q. If the similarity of the
k-th result RS.min is greater than the upper bound of the next-to-
compute trajectory seen_UB[i + 1], then the algorithm can termi-
nate and return the top-k results.

2.4 Interactive Exploration
@FINDER also supports interactive exploration. When the top-k

results are returned to user, the user can refine the query to improve
the final search result. A user can add points from previously re-
turned top-k trajectories to create a new exemplar query using new
POIs and activities, and can also remove uninteresting points. This
iteration can continue until the user finds the best combination of
POIs and activities.
Case 1: A user can add points from previous results to update the
query, and get a route which covers the query, or remove points that
are not appropriate.
Case 2: A user can edit the returned trajectories directly using travel
distance and time budget.

3. THE @FINDER SYSTEM
First, the interface of the system is shown. Then, two different

query scenarios are shown to sketch the processing flow. Finally,
we test the response efficiency using realistic dataset.

3.1 Interfaces
Figure 3 shows the interface for @FINDER. The interface is di-

vided into four distinct modules.
Central Map. Central map (A) uses the Google Map API to show
the results, including the route covering the trajectories on the road
map. The user can also label desired locations directly using the
heat map. So the module can be summarized as follows: (1) loca-
tion labeling; (2) result presentation; and (3) query refinement.
Query Input. The right side (B) shows the keyword input interface
including the location and activity, algorithm choice, and number
of results k. ETQ and ATSQ [8] queries are currently supported.
The word cloud suggests new keywords to users when a location is
selected on the map. The word cloud suggestions include the most
popular activities surrounding a POI. Users can also manually enter
activity keywords directly.
Result List. The left side (C) displays the top-k results and sum-
marizes the travel distance and time. The number of points related
to the query is also displayed. Only trajectories highlighted in the
result list are displayed in the map to improve presentation clarity.
Album Views. The bottom part (D) shows returned trajectory’s
details, including photos and textual descriptions for the trajectory.

3.2 Query Scenarios
Zero-knowledge Query. A user selects POIs in the map over-
lay. The selected points result in an updated word cloud of activ-
ities, which can be used to refine the query. Alternately, the user
can choose activities from the word cloud first and use the updated
heatmap of POIs in the map overlay to refine the query.
Some knowledge. Consider George’s search in Example 1. First,
George labels three destinations (red) in the map, and adds pre-
ferred activities for each point using the keyword input form. He
sets the number of returned results to 10, and uses the ETQ algo-
rithm. After clicking the search button, the left side will show the
top-k results, including travel distances and times for the related
points. Then George clicks the first result, and the trajectory (blue)
with 4 points is displayed in the map overlay. Each point has a
corresponding album in the bottom pane containing more details.

3.3 Response Efficiency
Here we briefly report preliminary experimental results for our

proposed algorithms.
Dataset. An activity trajectory dataset from Foursquare is used
in the experiments: Los Angeles (LA) [2, 8]. The dataset in-
cludes 31,557 trajectories, each trajectory has an average length of
6.83 locations, and the average number of activities per trajectory
is 14.67.
Queries. Trajectory queries are randomly sampled from the datasets.
To generate queries with a different number of points and activi-
ties, we randomly choose sub-trajectories from the query set and
sample partial activities from dataset. All experimental results are
averaged by running 100 queries. All algorithms are implemented
in Java and ran on a PC with a 3.30GHz CPU and 8GB RAM under
Ubuntu 14.04.
Algorithms Tested. We compare the methods described in Sec-
tion 2.3 for ETQ . (1) ILA is a baseline extended from the spatial-
only case Chen et al. [3]. (2) ILA-Gap is an improvement that
uses the gap-based dynamic expansion method introduced in Sec-
tion 2.3. (3) ETQ-2TA is our new solution with uses the two-level
threshold algorithm to further enhance performance.
Performance Evaluation. A variety of different parameter sweeps
have been performed to compare the algorithms, and will be ex-

3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

LA

|Q|

R
un

ni
ng

 ti
m

e(
s)

ILA
ILA−GAP
ETQ−2TA

3 4 5 6 7 8 9 10

0.
0

0.
4

0.
8

1.
2

LA

|q.act|

R
un

ni
ng

 ti
m

e(
s)

ILA
ILA−GAP
ETQ−2TA

Figure 4: The effect of the number of locations in the query (|Q|),
and the number of activities (|q.act|) on the total running time. Our
two-level thresholding algorithm is more robust to longer trajecto-
ries, and algorithmic improvements improve performance with re-
spect to the number of activites.

haustively analyzed in future work. One example of the perfor-
mance improvements achievable using our new approach is shown
in Figure 4. For the two parameters |Q| (number of locations) and
|q.act| (number of activities), ETQ-2TA has the best performance.
ETQ-2TA is up to 2x faster than the baseline method ILA, and can
be 5x faster in many cases. The number of activities (|q.act|) has
the greatest effect on performance. As more keywords are added,
the number of possible candidates in the intermediate pruning steps
also increases. In summary, our approach shows great promise for
spatial-textual trajectory search.

4. CONCLUSION
In this work we have presented our interactive trip planning sys-

tem – @FINDER, which is an efficient implementation of the two-
level threshold algorithm. Our long term goal is to devise more ef-
ficient and scalable solutions for the ETQ problem, and more care-
fully explore the current trade-offs in our current approaches.
Acknowledgment. This work was supported by the Australian
Research Council’s Discovery Projects Scheme (DP140103256).
Shane Culpepper is the recipient of an Australian Research Council
DECRA Research Fellowship (DE140100275).

References
[1] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information

retrieval, volume 463. ACM press New York, 1999.
[2] J. Bao, Y. Zheng, and M. F. Mokbel. Location-based and

preference-aware recommendation using sparse geo-social net-
working data. In SIGSPATIAL, pages 199–208, 2012.

[3] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie. Searching
trajectories by locations: An efficiency study. In SIGMOD,
pages 255–266, 2010.

[4] T. Kurashima, T. Iwata, G. Irie, and K. Fujimura. Travel route
recommendation using geotags in photo sharing sites. CIKM,
pages 579–588, 2010.

[5] X. Lu, C. Wang, J. M. Yang, Y. Pang, and L. Zhang. Photo2trip:
generating travel routes from geo-tagged photos for trip plan-
ning. In ACM MM, pages 143–152, 2010.

[6] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis.
User oriented trajectory search for trip recommendation. In
EDBT, pages 156–167, 2012.

[7] D. Zhang, C.-Y. Chan, and K.-L. Tan. Processing spatial key-
word query as a top-k aggregation query. In SIGIR, pages 355–
364, 2014.

[8] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. Towards efficient
search for activity trajectories. In ICDE, pages 230–241, 2013.

